These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21516448)

  • 21. Interaction between allocentric and egocentric reference frames in deaf and hearing populations.
    Zhang M; Tan X; Shen L; Wang A; Geng S; Chen Q
    Neuropsychologia; 2014 Feb; 54():68-76. PubMed ID: 24361477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes to online control and eye-hand coordination with healthy ageing.
    O'Rielly JL; Ma-Wyatt A
    Hum Mov Sci; 2018 Jun; 59():244-257. PubMed ID: 29747069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can ongoing movements be guided by allocentric visual information when the target is visible?
    Crowe EM; Bossard M; Brenner E
    J Vis; 2021 Jan; 21(1):6. PubMed ID: 33427872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual monitoring of goal-directed aiming movements.
    Brière J; Proteau L
    Q J Exp Psychol (Hove); 2017 Apr; 70(4):736-749. PubMed ID: 26902290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual information throughout a reach determines endpoint precision.
    Ma-Wyatt A; McKee SP
    Exp Brain Res; 2007 May; 179(1):55-64. PubMed ID: 17109109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Keeping the world at hand: rapid visuomotor processing for hand-object interactions.
    Makin TR; Holmes NP; Brozzoli C; Farnè A
    Exp Brain Res; 2012 Jun; 219(4):421-8. PubMed ID: 22526949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions between gaze-centered and allocentric representations of reach target location in the presence of spatial updating.
    Byrne PA; Cappadocia DC; Crawford JD
    Vision Res; 2010 Dec; 50(24):2661-70. PubMed ID: 20816887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the timing of reference frames for action control.
    Fischer MH; Pratt J; Adam JJ
    Exp Brain Res; 2007 Oct; 183(1):127-32. PubMed ID: 17828531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observing repetitive finger movements modulates response times of auditorily cued finger movements.
    Biermann-Ruben K; Jonas M; Kessler K; Siebner HR; Bäumer T; Schnitzler A; Münchau A
    Brain Cogn; 2008 Oct; 68(1):107-13. PubMed ID: 18433965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The integration of sequential aiming movements: Switching hand and direction at the first target.
    Lawrence GP; Khan MA; Mottram TM; Adam JJ; Buckolz E
    Acta Psychol (Amst); 2016 Feb; 164():181-7. PubMed ID: 26829022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allocentric representations for target memory and reaching in human cortex.
    Chen Y; Crawford JD
    Ann N Y Acad Sci; 2020 Mar; 1464(1):142-155. PubMed ID: 31621922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implicit visuomotor processing for quick online reactions is robust against aging.
    Kadota K; Gomi H
    J Neurosci; 2010 Jan; 30(1):205-9. PubMed ID: 20053902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-latency allocentric control of saccadic eye movements.
    Chakrabarty M; Nakano T; Kitazawa S
    J Neurophysiol; 2017 Jan; 117(1):376-387. PubMed ID: 27784804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On-line control of grasping actions: object-specific motor facilitation requires sustained visual input.
    Prabhu G; Lemon R; Haggard P
    J Neurosci; 2007 Nov; 27(46):12651-4. PubMed ID: 18003844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Planning movements well in advance.
    Hesse C; de Grave DD; Franz VH; Brenner E; Smeets JB
    Cogn Neuropsychol; 2008; 25(7-8):985-95. PubMed ID: 18608330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual distractors differentially interfere with the reaching and grasping components of prehension movements.
    Gangitano M; Daprati E; Gentilucci M
    Exp Brain Res; 1998 Oct; 122(4):441-52. PubMed ID: 9827863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Executed and observed movements have different distributed representations in human aIPS.
    Dinstein I; Gardner JL; Jazayeri M; Heeger DJ
    J Neurosci; 2008 Oct; 28(44):11231-9. PubMed ID: 18971465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visuomotor priming of a manual reaching movement during a perceptual decision task.
    Olivier G
    Brain Res; 2006 Dec; 1124(1):81-5. PubMed ID: 17069774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.