BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21516456)

  • 1. Genotoxicity of stereoisomers of 1,2,3,4-diepoxybutane in the gpt gene of Chinese hamster ovary AS52 cells.
    Kim MY
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):587-90. PubMed ID: 21516456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis of the supF gene by stereoisomers of 1,2,3,4-diepoxybutane.
    Kim MY; Tretyakova N; Wogan GN
    Chem Res Toxicol; 2007 May; 20(5):790-7. PubMed ID: 17428069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenicity of the human carcinogen treosulphan, and its hydrolysis product, dl-1,2:3,4-diepoxybutane in mammalian cells.
    Zhu S; Zeiger E
    Environ Mol Mutagen; 1993; 21(1):95-9. PubMed ID: 8419160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenicity of stereochemical configurations of 1,3-butadiene epoxy metabolites in human cells.
    Meng RQ; Hackfeld LC; Hedge RP; Wisse LA; Redetzke DL; Walker VE;
    Res Rep Health Eff Inst; 2010 Jun; (150):1-34; discussion 35-41. PubMed ID: 20853577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenicity and cytotoxicity of 2-methoxyethanol and its metabolites in Chinese hamster cells (the CHO/HPRT and AS52/GPT assays).
    Ma H; An J; Hsie AW; Au WW
    Mutat Res; 1993 Jan; 298(3):219-25. PubMed ID: 7678157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenicity of stereochemical configurations of 1,2-epoxybutene and 1,2:3,4-diepoxybutane in human lymphblastoid cells.
    Meng Q; Redetzke DL; Hackfeld LC; Hodge RP; Walker DM; Walker VE
    Chem Biol Interact; 2007 Mar; 166(1-3):207-18. PubMed ID: 16854403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of spontaneous mutations at the gpt locus in Chinese hamster ovary (AS52) cells.
    Tindall KR; Stankowski LF
    Mutat Res; 1989; 220(2-3):241-53. PubMed ID: 2494446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products.
    Plewa MJ; Kargalioglu Y; Vankerk D; Minear RA; Wagner ED
    Environ Mol Mutagen; 2002; 40(2):134-42. PubMed ID: 12203407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotoxicity of 1,3-butadiene and its epoxy intermediates.
    Walker VE; Walker DM; Meng Q; McDonald JD; Scott BR; Seilkop SK; Claffey DJ; Upton PB; Powley MW; Swenberg JA; Henderson RF;
    Res Rep Health Eff Inst; 2009 Aug; (144):3-79. PubMed ID: 20017413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Susceptibility to induction of chromosomal damage by metabolites of 1,3-butadiene and its relationship to 'spontaneous' sister chromatid exchange frequencies in human lymphocytes.
    Wiencke JK; Kelsey KT
    IARC Sci Publ; 1993; (127):265-73. PubMed ID: 8070872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotoxicity of 2,6- and 3,5-dimethylaniline in cultured mammalian cells: the role of reactive oxygen species.
    Chao MW; Kim MY; Ye W; Ge J; Trudel LJ; Belanger CL; Skipper PL; Engelward BP; Tannenbaum SR; Wogan GN
    Toxicol Sci; 2012 Nov; 130(1):48-59. PubMed ID: 22831970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the AS52/XPRT and the CHO/HPRT assays: evaluation of 6 drug candidates.
    Aaron CS; Stankowski LF
    Mutat Res; 1989 Jun; 223(2):121-8. PubMed ID: 2739676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomonitoring of exposure to 1,3-butadiene: detection by high-performance liquid chromatography and 32P-postlabelling of an adenine adduct formed by diepoxybutane.
    Leuratti C; Jones NJ; Marafante E; Peltonen K; Kostiainen R; Waters R
    IARC Sci Publ; 1993; (127):143-50. PubMed ID: 8070860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dicholesteroyl diselenide: cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts.
    de Oliveira IM; Degrandi TH; Jorge PM; Saffi J; Rosa RM; Guecheva TN; Henriques JA
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Mar; 763():1-11. PubMed ID: 24561378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction-kinetic parameters of glycidamide as determinants of mutagenic potency.
    Silvari V; Haglund J; Jenssen D; Golding BT; Ehrenberg L; Törnqvist M
    Mutat Res; 2005 Feb; 580(1-2):91-101. PubMed ID: 15668111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA strand breaking capacity of acrylamide and glycidamide in mammalian cells.
    Puppel N; Tjaden Z; Fueller F; Marko D
    Mutat Res; 2005 Feb; 580(1-2):71-80. PubMed ID: 15668109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative mutational spectra of the nitrogen mustard chlorambucil and its half-mustard analogue in Chinese hamster AS52 cells.
    Yaghi BM; Turner PM; Denny WA; Turner PR; O'Connor CJ; Ferguson LR
    Mutat Res; 1998 Jun; 401(1-2):153-64. PubMed ID: 9639696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstrand and intrastrand DNA-DNA cross-linking by 1,2,3,4-diepoxybutane: role of stereochemistry.
    Park S; Anderson C; Loeber R; Seetharaman M; Jones R; Tretyakova N
    J Am Chem Soc; 2005 Oct; 127(41):14355-65. PubMed ID: 16218630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the mutagenic potency and repair of glycidol-induced DNA lesions.
    Aasa J; Vare D; Motwani HV; Jenssen D; Törnqvist M
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Jul; 805():38-45. PubMed ID: 27402481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenicity of reactive oxygen and nitrogen species as detected by co-culture of activated inflammatory leukocytes and AS52 cells.
    Kim HW; Murakami A; Williams MV; Ohigashi H
    Carcinogenesis; 2003 Feb; 24(2):235-41. PubMed ID: 12584172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.