BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21516531)

  • 1. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface.
    Kabaso D; Gongadze E; Perutková S; Matschegewski C; Kralj-Iglic V; Beck U; van Rienen U; Iglic A
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):469-82. PubMed ID: 21516531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesion of osteoblasts to a nanorough titanium implant surface.
    Gongadze E; Kabaso D; Bauer S; Slivnik T; Schmuki P; van Rienen U; Iglič A
    Int J Nanomedicine; 2011; 6():1801-16. PubMed ID: 21931478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein adsorption on titanium surfaces and their effect on osteoblast attachment.
    Yang Y; Cavin R; Ong JL
    J Biomed Mater Res A; 2003 Oct; 67(1):344-9. PubMed ID: 14517894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of calcium ion implantation on human bone cell interaction with titanium.
    Nayab SN; Jones FH; Olsen I
    Biomaterials; 2005 Aug; 26(23):4717-27. PubMed ID: 15763251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.
    Hori N; Ueno T; Suzuki T; Yamada M; Att W; Okada S; Ohno A; Aita H; Kimoto K; Ogawa T
    Int J Oral Maxillofac Implants; 2010; 25(1):49-62. PubMed ID: 20209187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion resistance and biocompatibility of a new porous surface for titanium implants.
    Simon M; Lagneau C; Moreno J; Lissac M; Dalard F; Grosgogeat B
    Eur J Oral Sci; 2005 Dec; 113(6):537-45. PubMed ID: 16324146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior.
    Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL
    Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.
    Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T
    Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial contact angle measurements on variously treated dental/medical titanium materials.
    Lim YJ; Oshida Y
    Biomed Mater Eng; 2001; 11(4):325-41. PubMed ID: 11790864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
    Webster TJ; Ejiofor JU
    Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizations of titanium implant surfaces. III.
    Keller JC; Stanford CM; Wightman JP; Draughn RA; Zaharias R
    J Biomed Mater Res; 1994 Aug; 28(8):939-46. PubMed ID: 7983092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved initial osteoblast functions on amino-functionalized titanium surfaces.
    Nebe B; Finke B; Lüthen F; Bergemann C; Schröder K; Rychly J; Liefeith K; Ohl A
    Biomol Eng; 2007 Nov; 24(5):447-54. PubMed ID: 17825608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biocompatibility of SLA-treated titanium implants.
    Kim H; Choi SH; Ryu JJ; Koh SY; Park JH; Lee IS
    Biomed Mater; 2008 Jun; 3(2):025011. PubMed ID: 18458368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study.
    Sammons RL; Lumbikanonda N; Gross M; Cantzler P
    Clin Oral Implants Res; 2005 Dec; 16(6):657-66. PubMed ID: 16307572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro.
    Sinha RK; Morris F; Shah SA; Tuan RS
    Clin Orthop Relat Res; 1994 Aug; (305):258-72. PubMed ID: 8050238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro assays for adhesion and migration of osteoblastic cells (Saos-2) on titanium surfaces.
    Li CY; Gao SY; Terashita T; Shimokawa T; Kawahara H; Matsuda S; Kobayashi N
    Cell Tissue Res; 2006 Jun; 324(3):369-75. PubMed ID: 16450122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness.
    Wu Y; Zitelli JP; TenHuisen KS; Yu X; Libera MR
    Biomaterials; 2011 Feb; 32(4):951-60. PubMed ID: 20974493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.