These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 2151668)
1. Semiconductive properties of passivated titanium and titanium based hard coatings on metals for implants--an experimental approach. Thull R Med Prog Technol; 1990; 16(4):225-34. PubMed ID: 2151668 [TBL] [Abstract][Full Text] [Related]
2. [Standardized testing of bone implant surfaces with an osteoblast cell culture cyste. III. PVD hard coatings and Ti6Al4V]. Steinert A; Hendrich C; Merklein F; Rader CP; Schütze N; Thull R; Eulert J Biomed Tech (Berl); 2000 Dec; 45(12):349-55. PubMed ID: 11194641 [TBL] [Abstract][Full Text] [Related]
3. New titanium alloys for biomaterials: a study of mechanical and corrosion properties and cytotoxicity. Kim TI; Han JH; Lee IS; Lee KH; Shin MC; Choi BB Biomed Mater Eng; 1997; 7(4):253-63. PubMed ID: 9408577 [TBL] [Abstract][Full Text] [Related]
4. [Animal experiment study of titanium with surface coatings of (Ti,Nb)ON and (Ti,Zr)O]. Thull R; Handke KD; Karle EJ Biomed Tech (Berl); 1995 Oct; 40(10):289-95. PubMed ID: 8527641 [TBL] [Abstract][Full Text] [Related]
5. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786 [TBL] [Abstract][Full Text] [Related]
6. Surface elastic properties of Ti alloys modified for medical implants: a force spectroscopy study. Munuera C; Matzelle TR; Kruse N; López MF; Gutiérrez A; Jiménez JA; Ocal C Acta Biomater; 2007 Jan; 3(1):113-9. PubMed ID: 17070123 [TBL] [Abstract][Full Text] [Related]
7. Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface. Albert K; Schledjewski R; Harbaugh M; Bleser S; Jamison R; Friedrich K Biomed Mater Eng; 1994; 4(3):199-211. PubMed ID: 7950869 [TBL] [Abstract][Full Text] [Related]
8. Wear-resistant, hemocompatible Ti-Nb-Zr and Zr-Nb alloys to improve blood pump design and performance. Davidson JA; Daigle KP; Kovacs P Artif Organs; 1996 Jun; 20(6):513-22. PubMed ID: 8817948 [TBL] [Abstract][Full Text] [Related]
9. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method. Wu C; Ramaswamy Y; Gale D; Yang W; Xiao K; Zhang L; Yin Y; Zreiqat H Acta Biomater; 2008 May; 4(3):569-76. PubMed ID: 18182336 [TBL] [Abstract][Full Text] [Related]
10. Surface modification by alkali and heat treatments in titanium alloys. Lee BH; Do Kim Y; Shin JH; Hwan Lee K J Biomed Mater Res; 2002 Sep; 61(3):466-73. PubMed ID: 12115472 [TBL] [Abstract][Full Text] [Related]
11. A new advanced surface modification technique--titanium oxide ceramic surface implants: the background and long-term results. Szabó G; Kovács L; Vargha K; Barabás J; Németh Z J Long Term Eff Med Implants; 1999; 9(3):247-59. PubMed ID: 10847966 [TBL] [Abstract][Full Text] [Related]
12. Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris. Davidson JA; Poggie RA; Mishra AK Biomed Mater Eng; 1994; 4(3):213-29. PubMed ID: 7950870 [TBL] [Abstract][Full Text] [Related]
13. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
14. Laser-assisted Zr/ZrO(2) coating on Ti for load-bearing implants. Balla VK; Xue W; Bose S; Bandyopadhyay A Acta Biomater; 2009 Sep; 5(7):2800-9. PubMed ID: 19398221 [TBL] [Abstract][Full Text] [Related]
15. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586 [TBL] [Abstract][Full Text] [Related]
16. Surface characteristics of electrochemically oxidized implants and acid-etched implants: surface chemistry, morphology, pore configurations, oxide thickness, crystal structure, and roughness. Sul YT; Byon E; Wennerberg A Int J Oral Maxillofac Implants; 2008; 23(4):631-40. PubMed ID: 18807558 [TBL] [Abstract][Full Text] [Related]
17. Study of different biocomposite coatings on Ti alloy by a subsonic thermal spraying technique. Li M; Zhang R; Wang J; Yang S Biomed Mater; 2007 Mar; 2(1):1-5. PubMed ID: 18458426 [TBL] [Abstract][Full Text] [Related]
18. [Modern methods for studying the surface of titanium implants (literature review)]. Suba C; Velich N; Vörös J; Turi C; Szabó G Fogorv Sz; 2004 Feb; 97(1):29-35. PubMed ID: 15067890 [TBL] [Abstract][Full Text] [Related]
19. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid. Chen X; Nouri A; Li Y; Lin J; Hodgson PD; Wen C Biotechnol Bioeng; 2008 Oct; 101(2):378-87. PubMed ID: 18454499 [TBL] [Abstract][Full Text] [Related]
20. Examination of the bone-metal interface of titanium implants coated by the microwave plasma chemical vapor deposition method. Rupprecht S; Bloch A; Rosiwal S; Neukam FW; Wiltfang J Int J Oral Maxillofac Implants; 2002; 17(6):778-85. PubMed ID: 12507236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]