These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 21517039)
1. Electrical contact properties between the accumulation layer and metal electrodes in ultrathin poly(3-hexylthiophene)(P3HT) field effect transistors. Park B; Aiyar A; Hong JI; Reichmanis E ACS Appl Mater Interfaces; 2011 May; 3(5):1574-80. PubMed ID: 21517039 [TBL] [Abstract][Full Text] [Related]
2. Change in electronic states in the accumulation layer at interfaces in a poly(3-hexylthiophene) field-effect transistor and the impact of encapsulation. Park B; Kim YJ; Graham S; Reichmanis E ACS Appl Mater Interfaces; 2011 Sep; 3(9):3545-51. PubMed ID: 21863841 [TBL] [Abstract][Full Text] [Related]
3. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. Panzer MJ; Frisbie CD J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of organic field effect transistor by directly grown poly(3 hexylthiophene) crystalline nanowires on carbon nanotube aligned array electrode. Sarker BK; Liu J; Zhai L; Khondaker SI ACS Appl Mater Interfaces; 2011 Apr; 3(4):1180-5. PubMed ID: 21405101 [TBL] [Abstract][Full Text] [Related]
5. Polymer Electrolyte Blend Gate Dielectrics for High-Performance Ultrathin Organic Transistors: Toward Favorable Polymer Blend Miscibility and Reliability. Nketia-Yawson B; Tabi GD; Noh YY ACS Appl Mater Interfaces; 2019 May; 11(19):17610-17616. PubMed ID: 31018635 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of electrochemical transistor based on pi-conjugate polymer Langmuir-Blodgett film. Matsui J; Sato Y; Mikayama T; Miyashita T Langmuir; 2007 Jul; 23(16):8602-6. PubMed ID: 17595118 [TBL] [Abstract][Full Text] [Related]
7. Effect of self-assembled monolayers on charge injection and transport in poly(3-hexylthiophene)-based field-effect transistors at different channel length scales. Singh KA; Nelson TL; Belot JA; Young TM; Dhumal NR; Kowalewski T; McCullough RD; Nachimuthu P; Thevuthasan S; Porter LM ACS Appl Mater Interfaces; 2011 Aug; 3(8):2973-8. PubMed ID: 21790138 [TBL] [Abstract][Full Text] [Related]
8. Ultrathin body poly(3-hexylthiophene) transistors with improved short-channel performance. Wang C; Rivnay J; Himmelberger S; Vakhshouri K; Toney MF; Gomez ED; Salleo A ACS Appl Mater Interfaces; 2013 Apr; 5(7):2342-6. PubMed ID: 23429794 [TBL] [Abstract][Full Text] [Related]
9. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. Guo X; Ortiz RP; Zheng Y; Hu Y; Noh YY; Baeg KJ; Facchetti A; Marks TJ J Am Chem Soc; 2011 Feb; 133(5):1405-18. PubMed ID: 21207965 [TBL] [Abstract][Full Text] [Related]
10. Bottom-contact poly(3,3'''-didodecylquaterthiophene) thin-film transistors with gold source-drain electrodes modified by alkanethiol monolayers. Cai QJ; Chan-Park MB; Lu ZS; Li CM; Ong BS Langmuir; 2008 Oct; 24(20):11889-94. PubMed ID: 18774833 [TBL] [Abstract][Full Text] [Related]
12. Enhanced mobility and effective control of threshold voltage in P3HT-based field-effect transistors via inclusion of oligothiophenes. Chu PH; Zhang L; Colella NS; Fu B; Park JO; Srinivasarao M; Briseño AL; Reichmanis E ACS Appl Mater Interfaces; 2015 Apr; 7(12):6652-60. PubMed ID: 25757100 [TBL] [Abstract][Full Text] [Related]
13. A high-performance organic field-effect transistor based on platinum(II) porphyrin: peripheral substituents on porphyrin ligand significantly affect film structure and charge mobility. Che CM; Xiang HF; Chui SS; Xu ZX; Roy VA; Yan JJ; Fu WF; Lai PT; Williams ID Chem Asian J; 2008 Jul; 3(7):1092-103. PubMed ID: 18528916 [TBL] [Abstract][Full Text] [Related]
15. p-Channel organic semiconductors based on hybrid acene-thiophene molecules for thin-film transistor applications. Merlo JA; Newman CR; Gerlach CP; Kelley TW; Muyres DV; Fritz SE; Toney MF; Frisbie CD J Am Chem Soc; 2005 Mar; 127(11):3997-4009. PubMed ID: 15771537 [TBL] [Abstract][Full Text] [Related]
16. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. Zhang R; Li B; Iovu MC; Jeffries-El M; Sauvé G; Cooper J; Jia S; Tristram-Nagle S; Smilgies DM; Lambeth DN; McCullough RD; Kowalewski T J Am Chem Soc; 2006 Mar; 128(11):3480-1. PubMed ID: 16536496 [TBL] [Abstract][Full Text] [Related]
17. Effect of composition on the conductivity and morphology of poly(3-hexylthiophene)/gold nanoparticle composite Langmuir-Schaeffer films. Nicholson PG; Ruiz V; Macpherson JV; Unwin PR Phys Chem Chem Phys; 2006 Nov; 8(43):5096-105. PubMed ID: 17091160 [TBL] [Abstract][Full Text] [Related]
18. Effect of thickness-dependent microstructure on the out-of-plane hole mobility in poly(3-hexylthiophene) films. Huang B; Glynos E; Frieberg B; Yang H; Green PF ACS Appl Mater Interfaces; 2012 Oct; 4(10):5204-10. PubMed ID: 22956653 [TBL] [Abstract][Full Text] [Related]
19. Microstructure-Dependent Charge Carrier Transport of Poly(3-hexylthiophene) Ultrathin Films with Different Thicknesses. Janasz L; Gradzka M; Chlebosz D; Zajaczkowski W; Marszalek T; Kiersnowski A; Ulanski J; Pisula W Langmuir; 2017 May; 33(17):4189-4197. PubMed ID: 28383267 [TBL] [Abstract][Full Text] [Related]
20. Towards a unified description of the charge transport mechanisms in conductive atomic force microscopy studies of semiconducting polymers. Moerman D; Sebaihi N; Kaviyil SE; Leclère P; Lazzaroni R; Douhéret O Nanoscale; 2014 Sep; 6(18):10596-603. PubMed ID: 25079791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]