These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21517083)

  • 61. Effect of acetylsalicylic acid on the current-voltage characteristics of planar lipid membranes.
    Watala C; Drapeza A; Loban V; Asztemborska M; Shcharbin D
    Biophys Chem; 2009 Jun; 142(1-3):27-33. PubMed ID: 19321250
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The interaction of hybrid nanoparticles inserted within surfactant bilayers.
    Constantin D
    J Chem Phys; 2010 Oct; 133(14):144901. PubMed ID: 20950035
    [TBL] [Abstract][Full Text] [Related]  

  • 63. AFM studies of the effect of temperature and electric field on the structure of a DMPC-cholesterol bilayer supported on a Au(111) electrode surface.
    Chen M; Li M; Brosseau CL; Lipkowski J
    Langmuir; 2009 Jan; 25(2):1028-37. PubMed ID: 19113809
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Detection of membrane biointeractions based on fluorescence superquenching.
    Zeineldin R; Piyasena ME; Sklar LA; Whitten D; Lopez GP
    Langmuir; 2008 Apr; 24(8):4125-31. PubMed ID: 18302435
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interaction of nanoparticles with lipid membranes: a multiscale perspective.
    Montis C; Maiolo D; Alessandri I; Bergese P; Berti D
    Nanoscale; 2014 Jun; 6(12):6452-7. PubMed ID: 24807475
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [The interaction of nanocrystals of corundum and quartz with erythrocyte membranes].
    Mokrushnikov PV; Panin LE; Zaĭtsev BP; Doronin NS; Kozel'skaia AI; Panin AV
    Biofizika; 2011; 56(6):1105-10. PubMed ID: 22279755
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of geometric nanoparticle rotation on cellular internalization process.
    Yang K; Yuan B; Ma YQ
    Nanoscale; 2013 Sep; 5(17):7998-8006. PubMed ID: 23863854
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Coating of magnetic nanoparticles affects their interactions with model cell membranes.
    Lazaratos M; Karathanou K; Mainas E; Chatzigoulas A; Pippa N; Demetzos C; Cournia Z
    Biochim Biophys Acta Gen Subj; 2020 Nov; 1864(11):129671. PubMed ID: 32565292
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Imaging the dynamics of individual electropores.
    Sengel JT; Wallace MI
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5281-6. PubMed ID: 27114528
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes.
    Preiss MR; Hart A; Kitchens C; Bothun GD
    J Phys Chem B; 2017 May; 121(19):5040-5047. PubMed ID: 28441023
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles.
    Lee K; Zhang L; Yi Y; Wang X; Yu Y
    ACS Nano; 2018 Apr; 12(4):3646-3657. PubMed ID: 29617553
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Scanning-aperture trapping and manipulation of single charged nanoparticles.
    Tae Kim J; Spindler S; Sandoghdar V
    Nat Commun; 2014 Mar; 5():3380. PubMed ID: 24614532
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bubble nucleation in lipid bilayers: a mechanism for low frequency ultrasound disruption.
    Wrenn SP; Small E; Dan N
    Biochim Biophys Acta; 2013 Apr; 1828(4):1192-7. PubMed ID: 23313452
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes.
    Nangia S; Sureshkumar R
    Langmuir; 2012 Dec; 28(51):17666-71. PubMed ID: 23088323
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations.
    Gupta R; Badhe Y; Mitragotri S; Rai B
    Nanoscale; 2020 Mar; 12(11):6318-6333. PubMed ID: 32133467
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Surface nanostructures for fluorescence probing of supported lipid bilayers on reflective substrates.
    Dabkowska AP; Piret G; Niman CS; Lard M; Linke H; Nylander T; Prinz CN
    Nanoscale; 2015 Nov; 7(43):18020-4. PubMed ID: 26482860
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Predicting the Time of Entry of Nanoparticles in Lipid Membranes.
    Liu C; Elvati P; Majumder S; Wang Y; Liu AP; Violi A
    ACS Nano; 2019 Sep; 13(9):10221-10232. PubMed ID: 31401835
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Permission to enter cell by shape: nanodisk vs nanosphere.
    Zhang Y; Tekobo S; Tu Y; Zhou Q; Jin X; Dergunov SA; Pinkhassik E; Yan B
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4099-105. PubMed ID: 22839702
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face?
    Leroueil PR; Hong S; Mecke A; Baker JR; Orr BG; Banaszak Holl MM
    Acc Chem Res; 2007 May; 40(5):335-42. PubMed ID: 17474708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.