These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21517089)

  • 1. Striking influence of the catalyst support and its acid-base properties: new insight into the growth mechanism of carbon nanotubes.
    Magrez A; Smajda R; Seo JW; Horváth E; Ribic PR; Andresen JC; Acquaviva D; Olariu A; Laurenczy G; Forró L
    ACS Nano; 2011 May; 5(5):3428-37. PubMed ID: 21517089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition.
    Picher M; Anglaret E; Arenal R; Jourdain V
    ACS Nano; 2011 Mar; 5(3):2118-25. PubMed ID: 21314174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-induced catalyst restructuring for epitaxial growth of multiwalled carbon nanotubes.
    Pattinson SW; Ranganathan V; Murakami HK; Koziol KK; Windle AH
    ACS Nano; 2012 Sep; 6(9):7723-30. PubMed ID: 22853327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions.
    In JB; Grigoropoulos CP; Chernov AA; Noy A
    ACS Nano; 2011 Dec; 5(12):9602-10. PubMed ID: 22070618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rapid growth of vertically aligned carbon nanotubes using laser heating.
    Park JB; Jeong SH; Jeong MS; Lim SC; Lee IH; Lee YH
    Nanotechnology; 2009 May; 20(18):185604. PubMed ID: 19420620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply.
    Han ZJ; Levchenko I; Yick S; Ostrikov KK
    Nanoscale; 2011 Nov; 3(11):4848-53. PubMed ID: 22006171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic conversion of graphene into carbon nanotubes via gold nanoclusters at low temperatures.
    Dervishi E; Bourdo S; Driver JA; Watanabe F; Biris AR; Ghosh A; Berry B; Saini V; Biris AS
    ACS Nano; 2012 Jan; 6(1):501-11. PubMed ID: 22148744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of catalyst thickness and plasma pretreatment on the growth of carbon nanotubes and their field emission properties.
    Uh HS; Park SS; Kim BW
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3731-5. PubMed ID: 18047047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube patterning with capillary micromolding of catalyst.
    Lee J; Ryu C; Lee S; Jung D; Kim H; Chae H
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4174-9. PubMed ID: 18047145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube nucleation driven by catalyst morphology dynamics.
    Pigos E; Penev ES; Ribas MA; Sharma R; Yakobson BI; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):10096-101. PubMed ID: 22082229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled growth and characterization of two-dimensional single-walled carbon-nanotube networks for electrical applications.
    Edgeworth JP; Wilson NR; Macpherson JV
    Small; 2007 May; 3(5):860-70. PubMed ID: 17429817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations.
    Kimura H; Goto J; Yasuda S; Sakurai S; Yumura M; Futaba DN; Hata K
    ACS Nano; 2013 Apr; 7(4):3150-7. PubMed ID: 23458321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen.
    Ducati C; Koziol K; Friedrichs S; Yates TJ; Shaffer MS; Midgley PA; Windle AH
    Small; 2006 Jun; 2(6):774-84. PubMed ID: 17193122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution.
    Zhang R; Zhang Y; Zhang Q; Xie H; Qian W; Wei F
    ACS Nano; 2013 Jul; 7(7):6156-61. PubMed ID: 23806050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction.
    Yasuda S; Futaba DN; Yamada T; Satou J; Shibuya A; Takai H; Arakawa K; Yumura M; Hata K
    ACS Nano; 2009 Dec; 3(12):4164-70. PubMed ID: 19947579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.