BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 21517104)

  • 1. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.
    Wang C; Badmaev A; Jooyaie A; Bao M; Wang KL; Galatsis K; Zhou C
    ACS Nano; 2011 May; 5(5):4169-76. PubMed ID: 21517104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime.
    Che Y; Badmaev A; Jooyaie A; Wu T; Zhang J; Wang C; Galatsis K; Enaya HA; Zhou C
    ACS Nano; 2012 Aug; 6(8):6936-43. PubMed ID: 22768974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Floating electrode transistor based on purified semiconducting carbon nanotubes for high source-drain voltage operation.
    Lee J; Lee H; Kim T; Jin HJ; Shin J; Shin Y; Park S; Khang Y; Hong S
    Nanotechnology; 2012 Mar; 23(8):085204. PubMed ID: 22293578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks.
    Liyanage LS; Lee H; Patil N; Park S; Mitra S; Bao Z; Wong HS
    ACS Nano; 2012 Jan; 6(1):451-8. PubMed ID: 22148677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.
    Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C
    ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors.
    Lee SY; Lee SW; Kim SM; Yu WJ; Jo YW; Lee YH
    ACS Nano; 2011 Mar; 5(3):2369-75. PubMed ID: 21370895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-channel transistors constructed with solution-processed carbon nanotubes.
    Choi SJ; Bennett P; Takei K; Wang C; Lo CC; Javey A; Bokor J
    ACS Nano; 2013 Jan; 7(1):798-803. PubMed ID: 23259742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors.
    Zhou Z; Eres G; Jin R; Subedi A; Mandrus D; Kim EH
    Nanotechnology; 2009 Feb; 20(8):085709. PubMed ID: 19417470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube thin film transistors based on aerosol methods.
    Zavodchikova MY; Kulmala T; Nasibulin AG; Ermolov V; Franssila S; Grigoras K; Kauppinen EI
    Nanotechnology; 2009 Feb; 20(8):085201. PubMed ID: 19417441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics.
    Sangwan VK; Ortiz RP; Alaboson JM; Emery JD; Bedzyk MJ; Lauhon LJ; Marks TJ; Hersam MC
    ACS Nano; 2012 Aug; 6(8):7480-8. PubMed ID: 22783918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous Schottky barriers and contact band-to-band tunneling in carbon nanotube transistors.
    Perello DJ; Chulim S; Chae SJ; Lee I; Kim MJ; Lee YH; Yun M
    ACS Nano; 2010 Jun; 4(6):3103-8. PubMed ID: 20509663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
    Kang SJ; Kocabas C; Ozel T; Shim M; Pimparkar N; Alam MA; Rotkin SV; Rogers JA
    Nat Nanotechnol; 2007 Apr; 2(4):230-6. PubMed ID: 18654268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics.
    Zhang J; Wang C; Zhou C
    ACS Nano; 2012 Aug; 6(8):7412-9. PubMed ID: 22788112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically doped random network carbon nanotube p-n junction diode for rectifier.
    Biswas C; Lee SY; Ly TH; Ghosh A; Dang QN; Lee YH
    ACS Nano; 2011 Dec; 5(12):9817-23. PubMed ID: 22040293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz.
    Cao Y; Brady GJ; Gui H; Rutherglen C; Arnold MS; Zhou C
    ACS Nano; 2016 Jul; 10(7):6782-90. PubMed ID: 27327074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry.
    Kim S; Kim S; Park J; Ju S; Mohammadi S
    ACS Nano; 2010 Jun; 4(6):2994-8. PubMed ID: 20450163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.
    Shekhar S; Stokes P; Khondaker SI
    ACS Nano; 2011 Mar; 5(3):1739-46. PubMed ID: 21323326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications.
    Wang C; Chien JC; Takei K; Takahashi T; Nah J; Niknejad AM; Javey A
    Nano Lett; 2012 Mar; 12(3):1527-33. PubMed ID: 22313389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.