These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21517328)

  • 1. Influence of the glass transition on the liquid-gas spinodal decomposition.
    Testard V; Berthier L; Kob W
    Phys Rev Lett; 2011 Mar; 106(12):125702. PubMed ID: 21517328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent dynamics and logarithmic domain growth during the spinodal decomposition of a glass-forming liquid.
    Testard V; Berthier L; Kob W
    J Chem Phys; 2014 Apr; 140(16):164502. PubMed ID: 24784282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics.
    Pütz M; Nielaba P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032303. PubMed ID: 25871106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdynamics and arrest of coarsening during spinodal decomposition in thermoreversible colloidal gels.
    Gao Y; Kim J; Helgeson ME
    Soft Matter; 2015 Aug; 11(32):6360-70. PubMed ID: 26100757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid limits: glass transition and liquid-gas spinodal boundaries of metastable liquids.
    Sastry S
    Phys Rev Lett; 2000 Jul; 85(3):590-3. PubMed ID: 10991347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-equilibrium theory of arrested spinodal decomposition.
    Olais-Govea JM; López-Flores L; Medina-Noyola M
    J Chem Phys; 2015 Nov; 143(17):174505. PubMed ID: 26547174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A closer look at arrested spinodal decomposition in protein solutions.
    Gibaud T; Schurtenberger P
    J Phys Condens Matter; 2009 Aug; 21(32):322201. PubMed ID: 21693959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrested and temporarily arrested states in a protein-polymer mixture studied by USAXS and VSANS.
    Da Vela S; Exner C; Schäufele RS; Möller J; Fu Z; Zhang F; Schreiber F
    Soft Matter; 2017 Nov; 13(46):8756-8765. PubMed ID: 29130090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism and kinetics of phase separation in a gelatin/maltodextrin mixture studied by small-angle light scattering.
    Butler MF
    Biomacromolecules; 2002; 3(4):676-83. PubMed ID: 12099810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase behaviour of active Brownian particles: the role of dimensionality.
    Stenhammar J; Marenduzzo D; Allen RJ; Cates ME
    Soft Matter; 2014 Mar; 10(10):1489-99. PubMed ID: 24651885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference between the glass, gel, and gas-liquid transitions.
    Olais-Govea JM; López-Flores L; Zepeda-López JB; Medina-Noyola M
    Sci Rep; 2019 Nov; 9(1):16445. PubMed ID: 31712562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inherent structures of phase-separating binary mixtures: nucleation, spinodal decomposition, and pattern formation.
    Sarkar S; Bagchi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031506. PubMed ID: 21517506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gel to glass transition in simulation of a valence-limited colloidal system.
    Zaccarelli E; Saika-Voivod I; Buldyrev SV; Moreno AJ; Tartaglia P; Sciortino F
    J Chem Phys; 2006 Mar; 124(12):124908. PubMed ID: 16599726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion-controlled and "diffusionless" crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs.
    Sun Y; Xi H; Ediger MD; Richert R; Yu L
    J Chem Phys; 2009 Aug; 131(7):074506. PubMed ID: 19708750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-liquid transition in the molecular liquid triphenyl phosphite.
    Tanaka H; Kurita R; Mataki H
    Phys Rev Lett; 2004 Jan; 92(2):025701. PubMed ID: 14753945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glasslike arrest in spinodal decomposition as a route to colloidal gelation.
    Manley S; Wyss HM; Miyazaki K; Conrad JC; Trappe V; Kaufman LJ; Reichman DR; Weitz DA
    Phys Rev Lett; 2005 Dec; 95(23):238302. PubMed ID: 16384352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of an atomistic dynamic field theory for monatomic liquids: freezing and glass formation.
    Berry J; Elder KR; Grant M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061506. PubMed ID: 18643271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinodal decomposition in a model colloid-polymer mixture in microgravity.
    Bailey AE; Poon WC; Christianson RJ; Schofield AB; Gasser U; Prasad V; Manley S; Segre PN; Cipelletti L; Meyer WV; Doherty MP; Sankaran S; Jankovsky AL; Shiley WL; Bowen JP; Eggers JC; Kurta C; Lorik T; Pusey PN; Weitz DA
    Phys Rev Lett; 2007 Nov; 99(20):205701. PubMed ID: 18233160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.