These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 21517478)

  • 1. Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031131. PubMed ID: 21517478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postcollapse dynamics of self-gravitating Brownian particles and bacterial populations.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066109. PubMed ID: 15244669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026115. PubMed ID: 15447553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-gravitating Brownian systems and bacterial populations with two or more types of particles.
    Sopik J; Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026105. PubMed ID: 16196642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential.
    Chavanis PH; Delfini L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051103. PubMed ID: 20866181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model.
    Chavanis PH; Delfini L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032139. PubMed ID: 24730821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical dynamics of self-gravitating Langevin particles and bacterial populations.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061111. PubMed ID: 19256806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046133. PubMed ID: 12443285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the Bose-Einstein condensation: analogy with the collapse dynamics of a classical self-gravitating Brownian gas.
    Sopik J; Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011112. PubMed ID: 16907065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066103. PubMed ID: 16906910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of self-gravitating systems.
    Chavanis PH; Rosier C; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036105. PubMed ID: 12366182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial effects in diffusion-limited reactions.
    Dorsaz N; De Michele C; Piazza F; Foffi G
    J Phys Condens Matter; 2010 Mar; 22(10):104116. PubMed ID: 21389450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poissonian steady states: from stationary densities to stationary intensities.
    Eliazar I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041140. PubMed ID: 23214562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swarming in three dimensions.
    Strefler J; Erdmann U; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031927. PubMed ID: 18851085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016116. PubMed ID: 14995676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.
    Lizana L; Ambjörnsson T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051103. PubMed ID: 20364943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian motion and diffusion: from stochastic processes to chaos and beyond.
    Cecconi F; Cencini M; Falcioni M; Vulpiani A
    Chaos; 2005 Jun; 15(2):26102. PubMed ID: 16035904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066104. PubMed ID: 16906911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the motion of interacting particles: homogeneous systems and binary mixtures.
    Savel'ev S; Nori F
    Chaos; 2005 Jun; 15(2):26112. PubMed ID: 16035914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.