These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 21517529)

  • 1. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.
    Cui Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031911. PubMed ID: 21517529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sheared active fluids: thickening, thinning, and vanishing viscosity.
    Giomi L; Liverpool TB; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051908. PubMed ID: 20866262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective viscosity of dilute bacterial suspensions: a two-dimensional model.
    Haines BM; Aronson IS; Berlyand L; Karpeev DA
    Phys Biol; 2008 Nov; 5(4):046003. PubMed ID: 19029599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective viscosity of microswimmer suspensions.
    Rafaï S; Jibuti L; Peyla P
    Phys Rev Lett; 2010 Mar; 104(9):098102. PubMed ID: 20367014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear rheology of active particle suspensions: insights from an analytical approach.
    Heidenreich S; Hess S; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011907. PubMed ID: 21405713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensional rheology of active suspensions.
    Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shearing active gels close to the isotropic-nematic transition.
    Cates ME; Fielding SM; Marenduzzo D; Orlandini E; Yeomans JM
    Phys Rev Lett; 2008 Aug; 101(6):068102. PubMed ID: 18764508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscosity of a concentrated suspension of rigid monosized particles.
    Brouwers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051402. PubMed ID: 20866225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles.
    Lefauve A; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021002. PubMed ID: 25353410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting shear thickening behavior of a concentrated injectable suspension of levodopa.
    Allahham A; Stewart P; Marriott J; Mainwaring D
    J Pharm Sci; 2005 Nov; 94(11):2393-402. PubMed ID: 16200618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling.
    Jibuti L; Zimmermann W; Rafaï S; Peyla P
    Phys Rev E; 2017 Nov; 96(5-1):052610. PubMed ID: 29347779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green stabilization of microscale iron particles using guar gum: bulk rheology, sedimentation rate and enzymatic degradation.
    Gastone F; Tosco T; Sethi R
    J Colloid Interface Sci; 2014 May; 421():33-43. PubMed ID: 24594029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions.
    Philippe AM; Baravian C; Imperor-Clerc M; De Silva J; Paineau E; Bihannic I; Davidson P; Meneau F; Levitz P; Michot LJ
    J Phys Condens Matter; 2011 May; 23(19):194112. PubMed ID: 21525562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.
    Ali N; Asghar Z; Anwar Bég O; Sajid M
    J Theor Biol; 2016 May; 397():22-32. PubMed ID: 26903204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological characteristics of microbial suspensions of Pseudomonas aeruginosa and Bacillus cereus.
    Al-Asheh S; Abu-Jdayil B; Abunasser N; Barakat A
    Int J Biol Macromol; 2002 Apr; 30(2):67-74. PubMed ID: 11911895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.