These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21517574)

  • 1. Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states.
    Picallo CB; Riecke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036206. PubMed ID: 21517574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of synchronized states in networks of phase oscillators.
    Samani KA; Ghanbarian S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036209. PubMed ID: 18517487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of firing behaviors in networks of pulse-coupled oscillators with delayed excitatory coupling.
    Wu W; Liu B; Chen T
    Neural Netw; 2010 Sep; 23(7):783-8. PubMed ID: 20395111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Order parameter allows classification of planar graphs based on balanced fixed points in the Kuramoto model.
    Kaiser F; Alim K
    Phys Rev E; 2019 May; 99(5-1):052308. PubMed ID: 31212471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rare slips in fluctuating synchronized oscillator networks.
    Hindes J; Schwartz IB
    Chaos; 2018 Jul; 28(7):071106. PubMed ID: 30070499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states.
    Choe CU; Dahms T; Hövel P; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-locked regimes in delay-coupled oscillator networks.
    Punetha N; Prasad A; Ramaswamy R
    Chaos; 2014 Dec; 24(4):043111. PubMed ID: 25554031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity and learning in a network of coupled phase oscillators.
    Seliger P; Young SC; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter.
    Chen B; Engelbrecht JR; Mirollo R
    Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclops States in Repulsive Kuramoto Networks: The Role of Higher-Order Coupling.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh I
    Phys Rev Lett; 2023 Mar; 130(10):107201. PubMed ID: 36962033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local synchronization in complex networks of coupled oscillators.
    Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM
    Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.
    Chen B; Engelbrecht JR; Mirollo R
    Phys Rev E; 2017 Feb; 95(2-1):022207. PubMed ID: 28297946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization of coupled Kuramoto oscillators under resource constraints.
    Kroma-Wiley KA; Mucha PJ; Bassett DS
    Phys Rev E; 2021 Jul; 104(1-1):014211. PubMed ID: 34412254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous synchronization of coupled oscillator systems with frequency adaptation.
    Taylor D; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance tongues in a system of globally coupled FitzHugh-Nagumo oscillators with time-periodic coupling strength.
    Bîrzu A; Krischer K
    Chaos; 2010 Dec; 20(4):043114. PubMed ID: 21198084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of rotatory solitary states in Kuramoto networks with inertia.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV
    Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators.
    Kato M; Kori H
    Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical regimes of four almost identical chemical oscillators coupled via pulse inhibitory coupling with time delay.
    Vanag VK; Smelov PS; Klinshov VV
    Phys Chem Chem Phys; 2016 Feb; 18(7):5509-20. PubMed ID: 26863079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization of networks of oscillators with distributed delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Chaos; 2014 Dec; 24(4):043117. PubMed ID: 25554037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.