These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes. Babu JS; Sathian SP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051205. PubMed ID: 23004743 [TBL] [Abstract][Full Text] [Related]
5. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. Kannam SK; Todd BD; Hansen JS; Daivis PJ J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608 [TBL] [Abstract][Full Text] [Related]
6. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations. Sam A; Hartkamp R; Kannam SK; Sathian SP Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542 [TBL] [Abstract][Full Text] [Related]
7. How fast does water flow in carbon nanotubes? Kannam SK; Todd BD; Hansen JS; Daivis PJ J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316 [TBL] [Abstract][Full Text] [Related]
8. Role of Carbon Nanotube Wetting Transparency in Rapid Water Transport for a Nanopore Membrane. Liu R; Liu Z; Zhao Y; Cui P; Wu H Nano Lett; 2024 Mar; 24(11):3484-3489. PubMed ID: 38456741 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. Wang L; Dumont RS; Dickson JM J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic properties of carbon nanotubes. Walther JH; Werder T; Jaffe RL; Koumoutsakos P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062201. PubMed ID: 15244641 [TBL] [Abstract][Full Text] [Related]
11. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes. Wang L; Dumont RS; Dickson JM J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736 [TBL] [Abstract][Full Text] [Related]
12. Water flow in carbon nanotubes: the role of tube chirality. Sam A; K VP; Sathian SP Phys Chem Chem Phys; 2019 Mar; 21(12):6566-6573. PubMed ID: 30849155 [TBL] [Abstract][Full Text] [Related]
13. Electrokinetic desalination using honeycomb carbon nanotubes (HC-CNTs): a conceptual study by molecular simulation. Chen Q; Kong X; Li J; Lu D; Liu Z Phys Chem Chem Phys; 2014 Sep; 16(35):18941-8. PubMed ID: 25092215 [TBL] [Abstract][Full Text] [Related]
14. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes. Joly L J Chem Phys; 2011 Dec; 135(21):214705. PubMed ID: 22149809 [TBL] [Abstract][Full Text] [Related]
15. Fast increase of nanofluidic slip in supercooled water: the key role of dynamics. Herrero C; Tocci G; Merabia S; Joly L Nanoscale; 2020 Oct; 12(39):20396-20403. PubMed ID: 33021296 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations. Sokoloff JB Phys Rev E; 2018 Mar; 97(3-1):033107. PubMed ID: 29776023 [TBL] [Abstract][Full Text] [Related]
17. Inducing a Net Positive Flow of Water in Functionalized Concentric Carbon Nanotubes Using Rotating Electric Fields. Ostler D; Kannam SK; Frascoli F; Daivis PJ; D Todd B Langmuir; 2019 Nov; 35(45):14742-14749. PubMed ID: 31614091 [TBL] [Abstract][Full Text] [Related]
19. Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes. Gardea F; Glaz B; Riddick J; Lagoudas DC; Naraghi M ACS Appl Mater Interfaces; 2015 May; 7(18):9725-35. PubMed ID: 25905718 [TBL] [Abstract][Full Text] [Related]
20. Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane. Ang EYM; Ng TY; Yeo J; Lin R; Liu Z; Geethalakshmi KR Phys Chem Chem Phys; 2018 May; 20(20):13896-13902. PubMed ID: 29741170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]