These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21517620)
1. Biorthonormal transfer-matrix renormalization-group method for non-Hermitian matrices. Huang YK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036702. PubMed ID: 21517620 [TBL] [Abstract][Full Text] [Related]
2. Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. Nakatani N; Chan GK J Chem Phys; 2013 Apr; 138(13):134113. PubMed ID: 23574214 [TBL] [Abstract][Full Text] [Related]
3. Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes. Chan GK; Van Voorhis T J Chem Phys; 2005 May; 122(20):204101. PubMed ID: 15945707 [TBL] [Abstract][Full Text] [Related]
4. The density-matrix renormalization group: a short introduction. Schollwöck U Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1946):2643-61. PubMed ID: 21646271 [TBL] [Abstract][Full Text] [Related]
5. Spin-adapted density matrix renormalization group algorithms for quantum chemistry. Sharma S; Chan GK J Chem Phys; 2012 Mar; 136(12):124121. PubMed ID: 22462849 [TBL] [Abstract][Full Text] [Related]
6. High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. Kurashige Y; Yanai T J Chem Phys; 2009 Jun; 130(23):234114. PubMed ID: 19548718 [TBL] [Abstract][Full Text] [Related]
7. Scale-renormalized matrix-product states for correlated quantum systems. Sandvik AW Phys Rev Lett; 2008 Oct; 101(14):140603. PubMed ID: 18851515 [TBL] [Abstract][Full Text] [Related]
8. All-order renormalization of the propagator matrix for fermionic systems with flavor mixing. Kniehl BA Phys Rev Lett; 2014 Feb; 112(7):071603. PubMed ID: 24579589 [TBL] [Abstract][Full Text] [Related]
9. Skew projectors and generalized observables in polarization optics: a biorthogonal analyses [Invited]. Tudor T Appl Opt; 2014 Apr; 53(10):B80-6. PubMed ID: 24787221 [TBL] [Abstract][Full Text] [Related]
10. Asymptotic analysis and renormalized perturbation theory of the non-Hermitian dynamics of an inviscid vortex. Volponi F; Mahajan SM; Yoshida Z Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026312. PubMed ID: 11497704 [TBL] [Abstract][Full Text] [Related]
11. PT symmetry in classical and quantum statistical mechanics. Meisinger PN; Ogilvie MC Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1989):20120058. PubMed ID: 23509384 [TBL] [Abstract][Full Text] [Related]
12. Vertical density matrix algorithm: a higher-dimensional numerical renormalization scheme based on the tensor product state ansatz. Maeshima N; Hieida Y; Akutsu Y; Nishino T; Okunishi K Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016705. PubMed ID: 11461440 [TBL] [Abstract][Full Text] [Related]
13. On the spin and symmetry adaptation of the density matrix renormalization group method. Zgid D; Nooijen M J Chem Phys; 2008 Jan; 128(1):014107. PubMed ID: 18190185 [TBL] [Abstract][Full Text] [Related]
15. Limit cycles in quantum theories. Głazek SD; Wilson KG Phys Rev Lett; 2002 Dec; 89(23):230401. PubMed ID: 12484989 [TBL] [Abstract][Full Text] [Related]
16. Improved epsilon expansion for three-dimensional turbulence: two-loop renormalization near two dimensions. Adzhemyan LTs; Honkonen J; Kompaniets MV; Vasil'ev AN Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036305. PubMed ID: 15903572 [TBL] [Abstract][Full Text] [Related]
17. Linearized tensor renormalization group algorithm for the calculation of thermodynamic properties of quantum lattice models. Li W; Ran SJ; Gong SS; Zhao Y; Xi B; Ye F; Su G Phys Rev Lett; 2011 Mar; 106(12):127202. PubMed ID: 21517348 [TBL] [Abstract][Full Text] [Related]
18. Convergence behavior of the density-matrix renormalization group algorithm for optimized orbital orderings. Moritz G; Hess BA; Reiher M J Chem Phys; 2005 Jan; 122(2):024107. PubMed ID: 15638572 [TBL] [Abstract][Full Text] [Related]
19. Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. Zwolak M; Vidal G Phys Rev Lett; 2004 Nov; 93(20):207205. PubMed ID: 15600965 [TBL] [Abstract][Full Text] [Related]
20. Tensor renormalization group approach to two-dimensional classical lattice models. Levin M; Nave CP Phys Rev Lett; 2007 Sep; 99(12):120601. PubMed ID: 17930489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]