BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21517673)

  • 21. The effects of decompression and exogenous NGF on compressed cerebral cortex.
    Chen JR; Wang YJ; Tseng GF
    J Neurotrauma; 2004 Nov; 21(11):1640-51. PubMed ID: 15684655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estradiol increases dendritic length and spine density in CA1 neurons of the hippocampus of spontaneously hypertensive rats: a Golgi impregnation study.
    Brocca ME; Pietranera L; Beauquis J; De Nicola AF
    Exp Neurol; 2013 Sep; 247():158-64. PubMed ID: 23628746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffusion-weighted imaging of edema following traumatic brain injury in rats: effects of secondary hypoxia.
    Van Putten HP; Bouwhuis MG; Muizelaar JP; Lyeth BG; Berman RF
    J Neurotrauma; 2005 Aug; 22(8):857-72. PubMed ID: 16083353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prenatal stress and neonatal handling induce sex-specific changes in dendritic complexity and dendritic spine density in hippocampal subregions of prepubertal rats.
    Bock J; Murmu MS; Biala Y; Weinstock M; Braun K
    Neuroscience; 2011 Oct; 193():34-43. PubMed ID: 21807071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light and electron microscopic assessment of progressive atrophy following moderate traumatic brain injury in the rat.
    Rodriguez-Paez AC; Brunschwig JP; Bramlett HM
    Acta Neuropathol; 2005 Jun; 109(6):603-16. PubMed ID: 15877231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury.
    Hall ED; Sullivan PG; Gibson TR; Pavel KM; Thompson BM; Scheff SW
    J Neurotrauma; 2005 Feb; 22(2):252-65. PubMed ID: 15716631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice.
    Rozkalne A; Hyman BT; Spires-Jones TL
    Neurobiol Dis; 2011 Mar; 41(3):650-4. PubMed ID: 21134458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dicyclomine, an M1 muscarinic antagonist, reduces biomarker levels, but not neuronal degeneration, in fluid percussion brain injury.
    Cox CD; West EJ; Liu MC; Wang KK; Hayes RL; Lyeth BG
    J Neurotrauma; 2008 Nov; 25(11):1355-65. PubMed ID: 19061379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Newly born granule cells in the dentate gyrus rapidly extend axons into the hippocampal CA3 region following experimental brain injury.
    Emery DL; Fulp CT; Saatman KE; Schütz C; Neugebauer E; McIntosh TK
    J Neurotrauma; 2005 Sep; 22(9):978-88. PubMed ID: 16156713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rac1-regulated dendritic spine remodeling contributes to neuropathic pain after peripheral nerve injury.
    Tan AM; Chang YW; Zhao P; Hains BC; Waxman SG
    Exp Neurol; 2011 Dec; 232(2):222-33. PubMed ID: 21963650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuroprotection in the rat lateral fluid percussion model of traumatic brain injury by SNX-185, an N-type voltage-gated calcium channel blocker.
    Lee LL; Galo E; Lyeth BG; Muizelaar JP; Berman RF
    Exp Neurol; 2004 Nov; 190(1):70-8. PubMed ID: 15473981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MLC901, a Traditional Chinese Medicine induces neuroprotective and neuroregenerative benefits after traumatic brain injury in rats.
    Quintard H; Lorivel T; Gandin C; Lazdunski M; Heurteaux C
    Neuroscience; 2014 Sep; 277():72-86. PubMed ID: 24993477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury.
    Opii WO; Nukala VN; Sultana R; Pandya JD; Day KM; Merchant ML; Klein JB; Sullivan PG; Butterfield DA
    J Neurotrauma; 2007 May; 24(5):772-89. PubMed ID: 17518533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.
    Gao X; Deng P; Xu ZC; Chen J
    PLoS One; 2011; 6(9):e24566. PubMed ID: 21931758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury.
    Gabbita SP; Scheff SW; Menard RM; Roberts K; Fugaccia I; Zemlan FP
    J Neurotrauma; 2005 Jan; 22(1):83-94. PubMed ID: 15665604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-modal magnetic resonance imaging alterations in two rat models of mild neurotrauma.
    Obenaus A; Robbins M; Blanco G; Galloway NR; Snissarenko E; Gillard E; Lee S; Currás-Collazo M
    J Neurotrauma; 2007 Jul; 24(7):1147-60. PubMed ID: 17610354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmental forebrain cholinergic lesion and environmental enrichment: behaviour, CA1 cytoarchitecture and neurogenesis.
    Fréchette M; Rennie K; Pappas BA
    Brain Res; 2009 Feb; 1252():172-82. PubMed ID: 19084506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats.
    Thornton E; Vink R; Blumbergs PC; Van Den Heuvel C
    Brain Res; 2006 Jun; 1094(1):38-46. PubMed ID: 16697978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of hippocampal interneurons and epileptogenesis: a comparison of two animal models of acquired epilepsy.
    Huusko N; Römer C; Ndode-Ekane XE; Lukasiuk K; Pitkänen A
    Brain Struct Funct; 2015 Jan; 220(1):153-91. PubMed ID: 24096381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dose-dependent neuronal injury after traumatic brain injury.
    Hellmich HL; Capra B; Eidson K; Garcia J; Kennedy D; Uchida T; Parsley M; Cowart J; DeWitt DS; Prough DS
    Brain Res; 2005 May; 1044(2):144-54. PubMed ID: 15885213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.