BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21518240)

  • 1. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.
    Ruiz ON; Alvarez D; Torres C; Roman L; Daniell H
    Plant Biotechnol J; 2011 Jun; 9(5):609-17. PubMed ID: 21518240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of organomercurial compounds via chloroplast genetic engineering.
    Ruiz ON; Hussein HS; Terry N; Daniell H
    Plant Physiol; 2003 Jul; 132(3):1344-52. PubMed ID: 12857816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization.
    Hussein HS; Ruiz ON; Terry N; Daniell H
    Environ Sci Technol; 2007 Dec; 41(24):8439-46. PubMed ID: 18200876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase.
    Ruiz ON; Alvarez D; Gonzalez-Ruiz G; Torres C
    BMC Biotechnol; 2011 Aug; 11():82. PubMed ID: 21838857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection.
    Daniell H; Muthukumar B; Lee SB
    Curr Genet; 2001 Apr; 39(2):109-16. PubMed ID: 11405095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic engineering to enhance mercury phytoremediation.
    Ruiz ON; Daniell H
    Curr Opin Biotechnol; 2009 Apr; 20(2):213-9. PubMed ID: 19328673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils.
    Thomas JC; Davies EC; Malick FK; Endreszl C; Williams CR; Abbas M; Petrella S; Swisher K; Perron M; Edwards R; Osenkowski P; Urbanczyk N; Wiesend WN; Murray KS
    Biotechnol Prog; 2003; 19(2):273-80. PubMed ID: 12675559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide.
    Boyhan D; Daniell H
    Plant Biotechnol J; 2011 Jun; 9(5):585-98. PubMed ID: 21143365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Chloroplasts for High-Level Constitutive or Inducible Transgene Expression.
    Bock R
    Methods Mol Biol; 2021; 2317():77-94. PubMed ID: 34028763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of cadR Enhances its Specific Activity for Cd Detoxification and Accumulation in Arabidopsis.
    Li J; Wei X; Yu P; Deng X; Xu W; Ma M; Zhang H
    Plant Cell Physiol; 2016 Aug; 57(8):1720-31. PubMed ID: 27382127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens.
    Jin S; Zhang X; Daniell H
    Plant Biotechnol J; 2012 Apr; 10(3):313-27. PubMed ID: 22077160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury.
    Nagata T; Nakamura A; Akizawa T; Pan-Hou H
    Biol Pharm Bull; 2009 Sep; 32(9):1491-5. PubMed ID: 19721220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function.
    Daniell H; Ruiz G; Denes B; Sandberg L; Langridge W
    BMC Biotechnol; 2009 Apr; 9():33. PubMed ID: 19344517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.).
    Cui C; Song F; Tan Y; Zhou X; Zhao W; Ma F; Liu Y; Hussain J; Wang Y; Yang G; He G
    Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):284-91. PubMed ID: 21343162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
    Meagher RB; Heaton AC
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):502-13. PubMed ID: 15995854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of complete metabolic pathways in transgenic plants.
    Krichevsky A; Zaltsman A; King L; Citovsky V
    Biotechnol Genet Eng Rev; 2012; 28():1-13. PubMed ID: 22616478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospects of genetic engineering of plants for phytoremediation of toxic metals.
    Eapen S; D'Souza SF
    Biotechnol Adv; 2005 Mar; 23(2):97-114. PubMed ID: 15694122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taming plastids for a green future.
    Bock R; Khan MS
    Trends Biotechnol; 2004 Jun; 22(6):311-8. PubMed ID: 15158061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroplast-encoded chlB gene from Pinus thunbergii promotes root and early chlorophyll pigment development in Nicotiana tabaccum.
    Nazir S; Khan MS
    Mol Biol Rep; 2012 Dec; 39(12):10637-46. PubMed ID: 23053961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas.
    Michelet L; Lefebvre-Legendre L; Burr SE; Rochaix JD; Goldschmidt-Clermont M
    Plant Biotechnol J; 2011 Jun; 9(5):565-74. PubMed ID: 20809927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.