These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21518667)

  • 21. Novel design of solar cell efficiency improvement using an embedded electron accelerator on-chip.
    Srithanachai I; Ueamanapong S; Niemcharoen S; Yupapin PP
    Opt Express; 2012 Jun; 20(12):12640-8. PubMed ID: 22714292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel tunable dynamic tweezers using dark-bright soliton collision control in an optical add/drop filter.
    Teeka C; Jalil MA; Yupapin PP; Ali J
    IEEE Trans Nanobioscience; 2010 Dec; 9(4):258-62. PubMed ID: 21266312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photothermal trapping of dielectric particles by optical fiber-ring.
    Xin H; Lei H; Zhang Y; Li X; Li B
    Opt Express; 2011 Jan; 19(3):2711-9. PubMed ID: 21369092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection.
    Lin S; Hu J; Kimerling L; Crozier K
    Opt Lett; 2009 Nov; 34(21):3451-3. PubMed ID: 19881624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast all-optical switching using signal flow graph for PANDA resonator.
    Bahadoran M; Ali J; Yupapin PP
    Appl Opt; 2013 Apr; 52(12):2866-73. PubMed ID: 23669699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proportional enlargement of movement by using an optically driven multi-link system with an elastic joint.
    Jeong YJ; Lim TW; Son Y; Yang DY; Kong HJ; Lee KS
    Opt Express; 2010 Jun; 18(13):13745-53. PubMed ID: 20588507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanomanipulation and nanotechnology for future diagnostics.
    Sugiura T; Nakao M; Sato T; Minato K
    Stud Health Technol Inform; 2008; 134():135-42. PubMed ID: 18376041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optofluidic ring resonator switch for optical particle transport.
    Yang AH; Erickson D
    Lab Chip; 2010 Mar; 10(6):769-74. PubMed ID: 20221566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical spins and nano-antenna array for magnetic therapy.
    Thammawongsa N; Mitatha S; Yupapin PP
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):228-32. PubMed ID: 23686955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular network topology and reliability for multipurpose diagnosis.
    Moongfangklang N; Jalil MA; Innate K; Mitatha S; Ali J; Yupapin PP
    Int J Nanomedicine; 2011; 6():2385-92. PubMed ID: 22072875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping.
    Zwick S; Schaub C; Haist T; Osten W
    Opt Express; 2010 Sep; 18(19):19941-50. PubMed ID: 20940885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas.
    Righini M; Ghenuche P; Cherukulappurath S; Myroshnychenko V; García de Abajo FJ; Quidant R
    Nano Lett; 2009 Oct; 9(10):3387-91. PubMed ID: 19159322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles.
    Gelfand RM; Wheaton S; Gordon R
    Opt Lett; 2014 Nov; 39(22):6415-7. PubMed ID: 25490482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-mode subwavelength trapping by plasmonic tweezers based on V-type nanoantennas.
    Jin RC; Li JQ; Li L; Dong ZG; Liu Y
    Opt Lett; 2019 Jan; 44(2):319-322. PubMed ID: 30644890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient optical knob from slow light to fast light in a coupled nanomechanical resonator-quantum dot system.
    Li JJ; Zhu KD
    Opt Express; 2009 Oct; 17(22):19874-81. PubMed ID: 19997209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator.
    He X; Xu P; Wang J; Zhan M
    Opt Express; 2010 Jun; 18(13):13586-92. PubMed ID: 20588491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physics of optical tweezers.
    Nieminen TA; Knöner G; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():207-36. PubMed ID: 17586258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical trapping force combining an optical fiber probe and an AFM metallic probe.
    Liu B; Yang L; Wang Y
    Opt Express; 2011 Feb; 19(4):3703-14. PubMed ID: 21369196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.