BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21518862)

  • 1. Postmating transcriptional changes in reproductive tracts of con- and heterospecifically mated Drosophila mojavensis females.
    Bono JM; Matzkin LM; Kelleher ES; Markow TA
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7878-83. PubMed ID: 21518862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent evolutionary trajectories shape the postmating transcriptional profiles of conspecifically and heterospecifically mated cactophilic Drosophila females.
    Diaz F; Allan CW; Chen X; Coleman JM; Bono JM; Matzkin LM
    Commun Biol; 2022 Aug; 5(1):842. PubMed ID: 35986208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of candidate genes involved in post-mating-prezygotic reproductive isolation.
    Bono JM; Matzkin LM; Hoang K; Brandsmeier L
    J Evol Biol; 2015 Feb; 28(2):403-14. PubMed ID: 25522894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in Postmating Transcriptional Responses between Conspecific and Heterospecific Matings in Drosophila.
    Ahmed-Braimah YH; Wolfner MF; Clark AG
    Mol Biol Evol; 2021 Mar; 38(3):986-999. PubMed ID: 33035303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seminal fluid protein divergence among populations exhibiting postmating prezygotic reproductive isolation.
    Garlovsky MD; Evans C; Rosenow MA; Karr TL; Snook RR
    Mol Ecol; 2020 Nov; 29(22):4428-4441. PubMed ID: 32939895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative proteomics reveals rapid divergence in the postmating response of female reproductive tracts among sibling species.
    McCullough EL; McDonough CE; Pitnick S; Dorus S
    Proc Biol Sci; 2020 Jun; 287(1929):20201030. PubMed ID: 32576111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression and alternative splicing dynamics are perturbed in female head transcriptomes following heterospecific copulation.
    Diaz F; Allan CW; Markow TA; Bono JM; Matzkin LM
    BMC Genomics; 2021 May; 22(1):359. PubMed ID: 34006224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers.
    McDonough CE; Whittington E; Pitnick S; Dorus S
    J Proteomics; 2016 Mar; 135():26-37. PubMed ID: 26476146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Genes Cause Postmating Prezygotic Reproductive Isolation in the Drosophila virilis Group.
    Ahmed-Braimah YH
    G3 (Bethesda); 2016 Dec; 6(12):4067-4076. PubMed ID: 27729433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent postmating, prezygotic reproductive isolation between populations.
    Garlovsky MD; Snook RR
    Ecol Evol; 2018 Sep; 8(17):9062-9073. PubMed ID: 30271566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior.
    Dottorini T; Nicolaides L; Ranson H; Rogers DW; Crisanti A; Catteruccia F
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16215-20. PubMed ID: 17901209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid divergence of the male reproductive proteins in the Drosophila dunni group and implications for postmating incompatibilities between species.
    Hill T; Rosales-Stephens HL; Unckless RL
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33599779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptic reproductive isolation in the Drosophila simulans species complex.
    Price CS; Kim CH; Gronlund CJ; Coyne JA
    Evolution; 2001 Jan; 55(1):81-92. PubMed ID: 11263748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila.
    Wagstaff BJ; Begun DJ
    Genetics; 2007 Oct; 177(2):1023-30. PubMed ID: 17720912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sexually antagonistic coevolution of a postmating-prezygotic reproductive character in desert Drosophila.
    Knowles LL; Markow TA
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8692-6. PubMed ID: 11447265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Anopheles gambiae male accessory gland genes influences postmating response in female.
    Dottorini T; Persampieri T; Palladino P; Baker DA; Spaccapelo R; Senin N; Crisanti A
    FASEB J; 2013 Jan; 27(1):86-97. PubMed ID: 22997226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetrical sexual isolation but no postmating isolation between the closely related species Drosophila suboccidentalis and Drosophila occidentalis.
    Arthur NJ; Dyer KA
    BMC Evol Biol; 2015 Mar; 15():38. PubMed ID: 25881167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonantagonistic interactions between the sexes revealed by the ecological consequences of reproductive traits.
    Lacey Knowles L; Brodie Hernandez B; Markow TA
    J Evol Biol; 2005 Jan; 18(1):156-61. PubMed ID: 15669972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mating-responsive genes in reproductive tissues of female Drosophila melanogaster.
    Mack PD; Kapelnikov A; Heifetz Y; Bender M
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10358-10363. PubMed ID: 16798875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila.
    Rezával C; Nojima T; Neville MC; Lin AC; Goodwin SF
    Curr Biol; 2014 Mar; 24(7):725-30. PubMed ID: 24631243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.