These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21519544)

  • 21. Molecular basis of infrared detection by snakes.
    Gracheva EO; Ingolia NT; Kelly YM; Cordero-Morales JF; Hollopeter G; Chesler AT; Sánchez EE; Perez JC; Weissman JS; Julius D
    Nature; 2010 Apr; 464(7291):1006-11. PubMed ID: 20228791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface ultrastructure of pit organ, spectacle, and non pit organ epidermis of infrared imaging boid snakes: A scanning probe and scanning electron microscopy study.
    Campbell AL; Bunning TJ; Stone MO; Church D; Grace MS
    J Struct Biol; 1999 Jun; 126(2):105-20. PubMed ID: 10388622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High EphA3 expressing ophthalmic trigeminal sensory axons are sensitive to ephrin-A5-Fc: implications for lobe specific axon guidance.
    Jayasena CS; Flood WD; Koblar SA
    Neuroscience; 2005; 135(1):97-109. PubMed ID: 16054765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substance P-like immunoreactivity in the trigeminal sensory nuclei of an infrared-sensitive snake, Agkistrodon blomhoffi.
    Kadota T; Kishida R; Goris RC; Kusunoki T
    Cell Tissue Res; 1988 Aug; 253(2):311-7. PubMed ID: 2457445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wide-band spectral tuning of heat receptors in the pit organ of the copperhead snake (Crotalinae).
    Moiseenkova V; Bell B; Motamedi M; Wozniak E; Christensen B
    Am J Physiol Regul Integr Comp Physiol; 2003 Feb; 284(2):R598-606. PubMed ID: 12561787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2-Deoxyglucose labelling of the infrared sensory system in the rattlesnake, Crotalus viridis.
    Gruberg ER; Newman EA; Hartline PH
    J Comp Neurol; 1984 Nov; 229(3):321-8. PubMed ID: 6501607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nervous control of blood flow microkinetics in the infrared organs of pit vipers.
    Goris R; Nakano M; Atobe Y; Kadota T; Funakoshi K; Hisajima T; Kishida R
    Auton Neurosci; 2000 Oct; 84(1-2):98-106. PubMed ID: 11109994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The microvasculature of python pit organs: morphology and blood flow microkinetics.
    Goris RC; Atobe Y; Nakano M; Hisajima T; Funakoshi K; Kadota T
    Microvasc Res; 2003 May; 65(3):179-85. PubMed ID: 12711259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological properties and morphological characteristics of cutaneous and mucosal mechanical nociceptive neurons with A-delta peripheral axons in the trigeminal ganglia of crotaline snakes.
    Liang YF; Terashima S
    J Comp Neurol; 1993 Feb; 328(1):88-102. PubMed ID: 8429128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered visual experience and acute visual deprivation affect predatory targeting by infrared-imaging Boid snakes.
    Grace MS; Woodward OM
    Brain Res; 2001 Nov; 919(2):250-8. PubMed ID: 11701137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trigeminal ganglion neuronal activity and glial fibrillary acidic protein immunoreactivity after inferior alveolar nerve crush in the adult rat.
    Chudler EH; Anderson LC; Byers MR
    Pain; 1997 Nov; 73(2):141-149. PubMed ID: 9415499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats.
    Gracheva EO; Cordero-Morales JF; González-Carcacía JA; Ingolia NT; Manno C; Aranguren CI; Weissman JS; Julius D
    Nature; 2011 Aug; 476(7358):88-91. PubMed ID: 21814281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets.
    Safer AB; Grace MS
    Behav Brain Res; 2004 Sep; 154(1):55-61. PubMed ID: 15302110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique temperature-activated neurons from pit viper thermosensors.
    Pappas TC; Motamedi M; Christensen BN
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1219-28. PubMed ID: 15213055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Central response to infra-red stimulation of the pit receptors in a crotaline snake, Trimeresurus flavoviridis.
    Goris RC; Terashima SI
    J Exp Biol; 1973 Feb; 58(1):59-76. PubMed ID: 4350276
    [No Abstract]   [Full Text] [Related]  

  • 36. Distinct morphological characteristics of touch, temperature, and mechanical nociceptive neurons in the crotaline trigeminal ganglia.
    Liang YF; Terashima S; Zhu AQ
    J Comp Neurol; 1995 Oct; 360(4):621-33. PubMed ID: 8801254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox).
    Kohl T; Bothe MS; Luksch H; Straka H; Westhoff G
    J Comp Neurol; 2014 Dec; 522(18):3943-59. PubMed ID: 24989331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Touch and vibrotactile neurons in a crotaline snake's trigeminal ganglia.
    Terashima SI; Liang YF
    Somatosens Mot Res; 1994; 11(2):169-81. PubMed ID: 7976011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vagal afferent C fibers projecting to the lateral descending trigeminal complex of crotaline snakes.
    Kishida R; Yoshimoto M; Kusunoki T; Goris RC; Terashima S
    Exp Brain Res; 1984; 53(2):315-9. PubMed ID: 6200350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microvasculature of crotaline snake pit organs: possible function as a heat exchange mechanism.
    Amemiya F; Nakano M; Goris RC; Kadota T; Atobe Y; Funakoshi K; Hibiya K; Kishida R
    Anat Rec; 1999 Jan; 254(1):107-15. PubMed ID: 9892424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.