These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21519618)

  • 1. Formation of N-heterocyclic, donor-stabilized borenium ions.
    Someya CI; Inoue S; Präsang C; Irran E; Driess M
    Chem Commun (Camb); 2011 Jun; 47(23):6599-601. PubMed ID: 21519618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes.
    Zhao H; Lin Z; Marder TB
    J Am Chem Soc; 2006 Dec; 128(49):15637-43. PubMed ID: 17147372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B-H activation by frustrated Lewis pairs: borenium or boryl phosphonium cation?
    Dureen MA; Lough A; Gilbert TM; Stephan DW
    Chem Commun (Camb); 2008 Sep; (36):4303-5. PubMed ID: 18802551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydrogenation of saturated CC and BN bonds at cationic N-heterocyclic carbene stabilized M(III) centers (M = Rh, Ir).
    Tang CY; Thompson AL; Aldridge S
    J Am Chem Soc; 2010 Aug; 132(30):10578-91. PubMed ID: 20662531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Heterocyclic Carbene Stabilized Boryl Radicals.
    Silva Valverde MF; Schweyen P; Gisinger D; Bannenberg T; Freytag M; Kleeberg C; Tamm M
    Angew Chem Int Ed Engl; 2017 Jan; 56(4):1135-1140. PubMed ID: 27996186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT studies on the mechanism of the diboration of aldehydes catalyzed by copper(I) boryl complexes.
    Zhao H; Dang L; Marder TB; Lin Z
    J Am Chem Soc; 2008 Apr; 130(16):5586-94. PubMed ID: 18373345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base-stabilized boryl and cationic haloborylene complexes of iron.
    Bissinger P; Braunschweig H; Damme A; Dewhurst RD; Kraft K; Kramer T; Radacki K
    Chemistry; 2013 Sep; 19(40):13402-7. PubMed ID: 23959699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trans influence of boryl ligands and comparison with C, SI, and SN ligands.
    Zhu J; Lin Z; Marder TB
    Inorg Chem; 2005 Dec; 44(25):9384-90. PubMed ID: 16323924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of a diamidocarbene-supported borenium cation: isolation of a neutral boryl-substituted radical and a carbene-stabilized aminoborylene.
    Ledet AD; Hudnall TW
    Dalton Trans; 2016 Jun; 45(24):9820-6. PubMed ID: 26843319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boryllithium: isolation, characterization, and reactivity as a boryl anion.
    Segawa Y; Yamashita M; Nozaki K
    Science; 2006 Oct; 314(5796):113-5. PubMed ID: 17023656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a donor-stabilized tetrasilacyclobutadiene dication by a Lewis acid assisted reaction of an N-heterocyclic chloro silylene.
    Inoue S; Epping JD; Irran E; Driess M
    J Am Chem Soc; 2011 Jun; 133(22):8514-7. PubMed ID: 21553886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empty level structure of boryl-substituted pentacyclic heteroaromatics.
    Modelli A; Jones D
    Phys Chem Chem Phys; 2011 Jan; 13(1):276-81. PubMed ID: 21088783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigations on P-stabilized boryl cation radicals: from the Aufbau principle to SOMO-HOMO conversion.
    Li Y; Ding Z; Mu Q; Ren J; Shen Q; Zhang S; Zhang L
    Dalton Trans; 2023 Jan; 52(2):384-393. PubMed ID: 36519378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Ylide Functionalization to Stabilize Boron Cations.
    Scherpf T; Feichtner KS; Gessner VH
    Angew Chem Int Ed Engl; 2017 Mar; 56(12):3275-3279. PubMed ID: 28185370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse reactivity of borenium cations with >N-H compounds.
    Devillard M; Mallet-Ladeira S; Bouhadir G; Bourissou D
    Chem Commun (Camb); 2016 Jul; 52(57):8877-80. PubMed ID: 27352236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive dimerization of triruthenium clusters containing cationic aromatic N-heterocyclic ligands.
    Cabeza JA; del Río I; Pérez-Carreño E; Pruneda V
    Chemistry; 2010 May; 16(18):5425-36. PubMed ID: 20373311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-heterocyclic donor- and acceptor-type ligands based on 2-(1H-[1,2,3]triazol-4-yl)pyridines and their ruthenium(II) complexes.
    Happ B; Escudero D; Hager MD; Friebe C; Winter A; Görls H; Altuntaş E; González L; Schubert US
    J Org Chem; 2010 Jun; 75(12):4025-38. PubMed ID: 20496945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steering S-H and N-H bond activation by a stable n-heterocyclic silylene: different addition of H(2)S, NH(3), and organoamines on a silicon(II) ligand versus its Si(II)-->Ni(CO)(3) complex.
    Meltzer A; Inoue S; Präsang C; Driess M
    J Am Chem Soc; 2010 Mar; 132(9):3038-46. PubMed ID: 20148586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ylide-like phosphasilene and striking formation of a 4π-electron, resonance-stabilized 2,4-disila-1,3-diphosphacyclobutadiene.
    Inoue S; Wang W; Präsang C; Asay M; Irran E; Driess M
    J Am Chem Soc; 2011 Mar; 133(9):2868-71. PubMed ID: 21322569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence properties of simple N-substituted aldimines with a B-N interaction and their fluorescence quenching by a cyanide ion.
    Yoshino J; Kano N; Kawashima T
    J Org Chem; 2009 Oct; 74(19):7496-503. PubMed ID: 19778080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.