These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21519619)

  • 1. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities.
    Bi Y; Ouyang S; Cao J; Ye J
    Phys Chem Chem Phys; 2011 Jun; 13(21):10071-5. PubMed ID: 21519619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties.
    Bi Y; Ouyang S; Umezawa N; Cao J; Ye J
    J Am Chem Soc; 2011 May; 133(17):6490-2. PubMed ID: 21486031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light.
    Wang WS; Du H; Wang RX; Wen T; Xu AW
    Nanoscale; 2013 Apr; 5(8):3315-21. PubMed ID: 23467421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges.
    Bi Y; Hu H; Ouyang S; Lu G; Cao J; Ye J
    Chem Commun (Camb); 2012 Apr; 48(31):3748-50. PubMed ID: 22398441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of AgX nanowires into Ag derivative nano/microtubes for highly efficient visible-light photocatalysts.
    Choi WS; Byun GY; Bae TS; Lee HJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11225-33. PubMed ID: 24125116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties.
    Jiao Z; Zhang Y; Yu H; Lu G; Ye J; Bi Y
    Chem Commun (Camb); 2013 Jan; 49(6):636-8. PubMed ID: 23223196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and bonding in silver halides. A quantum chemical study of the monomers: Ag(2)X, AgX, AgX(2), and AgX(3) (X = F, Cl, Br, I).
    Müller-Rösing HC; Schulz A; Hargittai M
    J Am Chem Soc; 2005 Jun; 127(22):8133-45. PubMed ID: 15926841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX (X=Cl, Br, I): a theoretical study.
    Ma X; Dai Y; Guo M; Huang B
    Chemphyschem; 2012 Jun; 13(9):2304-9. PubMed ID: 22517725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Ag
    Hsieh MS; Su HJ; Hsieh PL; Chiang YW; Huang MH
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):39086-39093. PubMed ID: 29043767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective growth of metallic Ag nanocrystals on Ag3PO4 submicro-cubes for photocatalytic applications.
    Bi Y; Hu H; Ouyang S; Jiao Z; Lu G; Ye J
    Chemistry; 2012 Nov; 18(45):14272-5. PubMed ID: 23018652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity.
    Huang WC; Lyu LM; Yang YC; Huang MH
    J Am Chem Soc; 2012 Jan; 134(2):1261-7. PubMed ID: 22257266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics.
    Zhang L; Zhang H
    Nanoscale Res Lett; 2022 Nov; 17(1):114. PubMed ID: 36437419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile way to rejuvenate Ag3PO4 as a recyclable highly efficient photocatalyst.
    Wang H; Bai Y; Yang J; Lang X; Li J; Guo L
    Chemistry; 2012 Apr; 18(18):5524-9. PubMed ID: 22438207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst.
    Li X; Xue H; Pang H
    Nanoscale; 2017 Jan; 9(1):216-222. PubMed ID: 27906400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag/BiPO4 heterostructures: synthesis, characterization and their enhanced photocatalytic properties.
    Zhang Y; Fan H; Li M; Tian H
    Dalton Trans; 2013 Sep; 42(36):13172-8. PubMed ID: 23881385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties.
    Guan ML; Ma DK; Hu SW; Chen YJ; Huang SM
    Inorg Chem; 2011 Feb; 50(3):800-5. PubMed ID: 21171642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity.
    Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH
    J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel chelate ring-opening induced by silver(I) of five-coordinate palladium(II) and platinum(II) complexes containing tripodal polyphosphines.
    Fernández-Anca D; García-Seijo MI; Castiñeiras A; García-Fernández ME
    Inorg Chem; 2008 Jul; 47(13):5685-95. PubMed ID: 18507374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.