BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 21519825)

  • 1. Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia.
    Smits EL; Lee C; Hardwick N; Brooks S; Van Tendeloo VF; Orchard K; Guinn BA
    Cancer Immunol Immunother; 2011 Jun; 60(6):757-69. PubMed ID: 21519825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide vaccines for patients with acute myeloid leukemia.
    Schmitt M; Casalegno-Garduño R; Xu X; Schmitt A
    Expert Rev Vaccines; 2009 Oct; 8(10):1415-25. PubMed ID: 19803762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells.
    Grabrucker C; Liepert A; Dreyig J; Kremser A; Kroell T; Freudenreich M; Schmid C; Schweiger C; Tischer J; Kolb HJ; Schmetzer H
    J Immunother; 2010 Jun; 33(5):523-37. PubMed ID: 20463595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic cell-based immunotherapy in myeloid leukaemia: translating fundamental mechanisms into clinical applications.
    van de Loosdrecht AA; van den Ancker W; Houtenbos I; Ossenkoppele GJ; Westers TM
    Handb Exp Pharmacol; 2009; (188):319-48. PubMed ID: 19031033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunotherapy of acute myeloid leukemia: current approaches.
    Smits EL; Berneman ZN; Van Tendeloo VF
    Oncologist; 2009 Mar; 14(3):240-52. PubMed ID: 19289488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental approaches in immunological control of acute myelogenous leukaemia.
    Torelli GF; Orsini E; Guarini A; Kell J; Foà R
    Best Pract Res Clin Haematol; 2001 Mar; 14(1):189-209. PubMed ID: 11355931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of T-cell lines to autologous acute myeloid leukemia cells by competitive limiting dilution culture of acute myeloid leukemia mononuclear cells.
    Zhong RK; Lane TA; Ball ED
    Exp Hematol; 2008 Apr; 36(4):486-94. PubMed ID: 18249062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia.
    Chan L; Hardwick NR; Guinn BA; Darling D; Gäken J; Galea-Lauri J; Ho AY; Mufti GJ; Farzaneh F
    Cancer Immunol Immunother; 2006 Aug; 55(8):1017-24. PubMed ID: 16450142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic cell vaccines in acute leukaemia.
    Duncan C; Roddie H
    Best Pract Res Clin Haematol; 2008 Sep; 21(3):521-41. PubMed ID: 18790453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hematopoietic stem cell graft manipulation as a mechanism of immunotherapy.
    Talmadge JE
    Int Immunopharmacol; 2003 Aug; 3(8):1121-43. PubMed ID: 12860168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans.
    Robin M; Schlageter MH; Chomienne C; Padua RA
    Cancer Immunol Immunother; 2005 Oct; 54(10):933-43. PubMed ID: 15889256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunotherapy in acute myeloid leukemia.
    Arpinati M; Curti A
    Immunotherapy; 2014; 6(1):95-106. PubMed ID: 24341888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer vaccines for patients with acute myeloid leukemia--definition of leukemia-associated antigens and current clinical protocols targeting these antigens.
    Greiner J; Döhner H; Schmitt M
    Haematologica; 2006 Dec; 91(12):1653-61. PubMed ID: 17145602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular immunotherapy for multiple myeloma.
    Rosenblatt J; Avigan D
    Best Pract Res Clin Haematol; 2008 Sep; 21(3):559-77. PubMed ID: 18790455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic cell-based immunotherapy in acute and chronic myeloid leukaemia.
    Westers TM; Ossenkoppele GJ; van de Loosdrecht AA
    Biomed Pharmacother; 2007 Jul; 61(6):306-14. PubMed ID: 17368821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell therapy: achievements and perspectives.
    Bordignon C; Carlo-Stella C; Colombo MP; De Vincentiis A; Lanata L; Lemoli RM; Locatelli F; Olivieri A; Rondelli D; Zanon P; Tura S
    Haematologica; 1999 Dec; 84(12):1110-49. PubMed ID: 10586214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy.
    Acheampong DO; Adokoh CK; Asante DB; Asiamah EA; Barnie PA; Bonsu DOM; Kyei F
    Biomed Pharmacother; 2018 Jan; 97():225-232. PubMed ID: 29091870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical grade expansion of CD45RA, CD45RO, and CD62L-positive T-cell lines from HLA-compatible donors: high cytotoxic potential against AML and ALL cells.
    Barbui AM; Borleri G; Conti E; Ciocca A; Salvi A; Micò C; Introna M; Rambaldi A
    Exp Hematol; 2006 Apr; 34(4):475-85. PubMed ID: 16569594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inability to demonstrate lytic antibodies to autologous leukaemia cells in the sera from remission patients with acute myelogenous leukaemia treated with active specific immunotherapy.
    Chapuis BJ; Powles R; Alexander P
    Clin Exp Immunol; 1978 May; 32(2):253-8. PubMed ID: 276431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunotherapeutic strategies in acute lymphoblastic leukaemia relapsing after stem cell transplantation.
    Blair A; Goulden NJ; Libri NA; Oakhill A; Pamphilon DH
    Blood Rev; 2005 Nov; 19(6):289-300. PubMed ID: 16275419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.