BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21519877)

  • 1. Capacity for intracellular pH compensation during hypercapnia in white sturgeon primary liver cells.
    Huynh KT; Baker DW; Harris R; Church J; Brauner CJ
    J Comp Physiol B; 2011 Oct; 181(7):893-904. PubMed ID: 21519877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus.
    Baker DW; Matey V; Huynh KT; Wilson JM; Morgan JD; Brauner CJ
    Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1868-80. PubMed ID: 19339675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hypercapnia on intracellular pH regulation in a rainbow trout hepatoma cell line, RTH 149.
    Huynh KT; Baker DW; Harris R; Church J; Brauner CJ
    J Comp Physiol B; 2011 Oct; 181(7):883-92. PubMed ID: 21538070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exceptional CO₂ tolerance in white sturgeon (Acipenser transmontanus) is associated with protection of maximum cardiac performance during hypercapnia in situ.
    Baker DW; Hanson LM; Farrell AP; Brauner CJ
    Physiol Biochem Zool; 2011; 84(3):239-48. PubMed ID: 21527814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limited extracellular but complete intracellular acid-base regulation during short-term environmental hypercapnia in the armoured catfish, Liposarcus pardalis.
    Brauner CJ; Wang T; Wang Y; Richards JG; Gonzalez RJ; Bernier NJ; Xi W; Patrick M; Val AL
    J Exp Biol; 2004 Sep; 207(Pt 19):3381-90. PubMed ID: 15326214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic changes associated with acid-base regulation during hypercarbia in the CO2-tolerant chondrostean, white sturgeon (Acipenser transmontanus).
    Baker DW; Brauner CJ
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Jan; 161(1):61-8. PubMed ID: 21945112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White sturgeon (Acipenser transmontanus) acid-base regulation differs in response to different types of acidoses.
    Shartau RB; Baker DW; Brauner CJ
    J Comp Physiol B; 2017 Oct; 187(7):985-994. PubMed ID: 28283796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.
    Shaughnessy CA; Baker DW; Brauner CJ; Morgan JD; Bystriansky JS
    J Exp Biol; 2015 Sep; 218(Pt 17):2712-9. PubMed ID: 26333926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Na
    Shartau RB; Brix KV; Brauner CJ
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Feb; 204():197-204. PubMed ID: 27923711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive regions of Helix aspersa.
    Goldstein JI; Mok JM; Simon CM; Leiter JC
    Am J Physiol Regul Integr Comp Physiol; 2000 Aug; 279(2):R414-23. PubMed ID: 10938227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide and pH affect sperm motility of white sturgeon (Acipenser transmontanus).
    Ingermann RL; Holcomb M; Robinson ML; Cloud JG
    J Exp Biol; 2002 Sep; 205(Pt 18):2885-90. PubMed ID: 12177152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia.
    Gutowska MA; Melzner F; Langenbuch M; Bock C; Claireaux G; Pörtner HO
    J Comp Physiol B; 2010 Mar; 180(3):323-35. PubMed ID: 19838713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRP channels are involved in mediating hypercapnic Ca2+ responses in rat glia-rich medullary cultures independent of extracellular pH.
    Hirata Y; Oku Y
    Cell Calcium; 2010; 48(2-3):124-32. PubMed ID: 20728216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiorespiratory responses of white sturgeon to environmental hypercapnia.
    Crocker CE; Farrell AP; Gamperl AK; Cech JJ
    Am J Physiol Regul Integr Comp Physiol; 2000 Aug; 279(2):R617-28. PubMed ID: 10938253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis.
    Xu H; Cui N; Yang Z; Qu Z; Jiang C
    J Physiol; 2000 May; 524 Pt 3(Pt 3):725-35. PubMed ID: 10790154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential impacts of elevated CO2 and acidosis on the energy budget of gill and liver cells from Atlantic cod, Gadus morhua.
    Stapp LS; Kreiss CM; Pörtner HO; Lannig G
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Sep; 187():160-7. PubMed ID: 26005104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri).
    Perry SF; Kinkead R
    Respir Physiol; 1989 Sep; 77(3):365-77. PubMed ID: 2781171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water pH limits extracellular but not intracellular pH compensation in the CO
    Sackville MA; Shartau RB; Damsgaard C; Hvas M; Phuong LM; Wang T; Bayley M; Thanh Huong DT; Phuong NT; Brauner CJ
    J Exp Biol; 2018 Nov; 221(Pt 23):. PubMed ID: 30352827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dioxide and pH effects on temperature-sensitive and -insensitive hypothalamic neurons.
    Wright CL; Boulant JA
    J Appl Physiol (1985); 2007 Apr; 102(4):1357-66. PubMed ID: 17138840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta.
    Esbaugh AJ; Heuer R; Grosell M
    J Comp Physiol B; 2012 Oct; 182(7):921-34. PubMed ID: 22581071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.