BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21520214)

  • 1. First identification of tannin-binding proteins in saliva of Papio hamadryas using MS/MS mass spectrometry.
    Mau M; de Almeida AM; Coelho AV; Südekum KH
    Am J Primatol; 2011 Sep; 73(9):896-902. PubMed ID: 21520214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacity.
    Mau M; Südekum KH; Johann A; Sliwa A; Kaiser TM
    Am J Primatol; 2009 Aug; 71(8):663-9. PubMed ID: 19431194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG.
    Canon F; Paté F; Cheynier V; Sarni-Manchado P; Giuliani A; Pérez J; Durand D; Li J; Cabane B
    Langmuir; 2013 Feb; 29(6):1926-37. PubMed ID: 23297743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of a salivary intrinsically unstructured protein to bind different tannin targets revealed by mass spectrometry.
    Canon F; Giuliani A; Paté F; Sarni-Manchado P
    Anal Bioanal Chem; 2010 Sep; 398(2):815-22. PubMed ID: 20665010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indication of higher salivary alpha-amylase expression in hamadryas baboons and geladas compared to chimpanzees and humans.
    Mau M; Südekum KH; Johann A; Sliwa A; Kaiser TM
    J Med Primatol; 2010 Jun; 39(3):187-90. PubMed ID: 20202076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salivary tannin-binding proteins are a pervasive strategy used by the folivorous/frugivorous black howler monkey.
    Espinosa-Gómez FC; Serio-Silva JC; Santiago-García JD; Sandoval-Castro CA; Hernández-Salazar LT; Mejía-Varas F; Ojeda-Chávez J; Chapman CA
    Am J Primatol; 2018 Feb; 80(2):. PubMed ID: 29363818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the glycosylation of human salivary proline-rich proteins on their interactions with condensed tannins.
    Sarni-Manchado P; Canals-Bosch JM; Mazerolles G; Cheynier V
    J Agric Food Chem; 2008 Oct; 56(20):9563-9. PubMed ID: 18808139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of histatins as tannin-binding proteins in human saliva.
    Yan Q; Bennick A
    Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):341-7. PubMed ID: 7575474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid screening and identification of new soluble tannin-salivary protein aggregates in saliva by mass spectrometry (MALDI-TOF-TOF and FIA-ESI-MS).
    Perez-Gregorio MR; Mateus N; de Freitas V
    Langmuir; 2014 Jul; 30(28):8528-37. PubMed ID: 24967849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tannin-binding salivary proteins in three captive rhinoceros species.
    Clauss M; Gehrke J; Hatt JM; Dierenfeld ES; Flach EJ; Hermes R; Castell J; Streich WJ; Fickel J
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Jan; 140(1):67-72. PubMed ID: 15664314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.
    Cala O; Dufourc EJ; Fouquet E; Manigand C; Laguerre M; Pianet I
    Langmuir; 2012 Dec; 28(50):17410-8. PubMed ID: 23173977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of human salivary proteins families toward food polyphenols.
    Soares S; Vitorino R; Osório H; Fernandes A; Venâncio A; Mateus N; Amado F; de Freitas V
    J Agric Food Chem; 2011 May; 59(10):5535-47. PubMed ID: 21417408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of condensed tannin ingestion in sheep and goat parotid saliva proteome.
    Lamy E; da Costa G; Santos R; Capela e Silva F; Potes J; Pereira A; Coelho AV; Baptista ES
    J Anim Physiol Anim Nutr (Berl); 2011 Jun; 95(3):304-12. PubMed ID: 20880287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No major role for binding by salivary proteins as a defense against dietary tannins in Mediterranean goats.
    Hanovice-Ziony M; Gollop N; Landau SY; Ungar ED; Muklada H; Glasser TA; Perevolotsky A; Walker JW
    J Chem Ecol; 2010 Jul; 36(7):736-43. PubMed ID: 20559693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding new posttranslational modifications in salivary proline-rich proteins.
    Vitorino R; Alves R; Barros A; Caseiro A; Ferreira R; Lobo MC; Bastos A; Duarte J; Carvalho D; Santos LL; Amado FL
    Proteomics; 2010 Oct; 10(20):3732-42. PubMed ID: 20879038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of salivary proteins in the mechanism of astringency.
    Lee CA; Ismail B; Vickers ZM
    J Food Sci; 2012 Apr; 77(4):C381-7. PubMed ID: 22515235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins.
    da Costa G; Lamy E; Capela e Silva F; Andersen J; Sales Baptista E; Coelho AV
    J Chem Ecol; 2008 Mar; 34(3):376-87. PubMed ID: 18253799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of human salivary proline-rich proteins interaction with food tannins.
    Soares S; García-Estévez I; Ferrer-Galego R; Brás NF; Brandão E; Silva M; Teixeira N; Fonseca F; Sousa SF; Ferreira-da-Silva F; Mateus N; de Freitas V
    Food Chem; 2018 Mar; 243():175-185. PubMed ID: 29146325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saliva electrophoretic protein profiles in infants: changes with age and impact of teeth eruption and diet transition.
    Morzel M; Palicki O; Chabanet C; Lucchi G; Ducoroy P; Chambon C; Nicklaus S
    Arch Oral Biol; 2011 Jul; 56(7):634-42. PubMed ID: 21429473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecific differences in tannin intakes of forest-dwelling rodents in the wild revealed by a new method using fecal proline content.
    Shimada T; Nishii E; Saitoh T
    J Chem Ecol; 2011 Dec; 37(12):1277-84. PubMed ID: 22161223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.