BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21520492)

  • 1. Tutorial on physiologically based kinetic modeling in molecular nutrition and food research.
    Rietjens IM; Louisse J; Punt A
    Mol Nutr Food Res; 2011 Jun; 55(6):941-56. PubMed ID: 21520492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining in vitro embryotoxicity data with physiologically based kinetic (PBK) modelling to define in vivo dose-response curves for developmental toxicity of phenol in rat and human.
    Strikwold M; Spenkelink B; Woutersen RA; Rietjens IM; Punt A
    Arch Toxicol; 2013 Sep; 87(9):1709-23. PubMed ID: 23943240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward in vitro biomarkers for developmental toxicity and their extrapolation to the in vivo situation.
    Louisse J; Verwei M; Woutersen RA; Blaauboer BJ; Rietjens IM
    Expert Opin Drug Metab Toxicol; 2012 Jan; 8(1):11-27. PubMed ID: 22114915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically based kinetic models for the alkenylbenzene elemicin in rat and human and possible implications for risk assessment.
    van den Berg SJ; Punt A; Soffers AE; Vervoort J; Ngeleja S; Spenkelink B; Rietjens IM
    Chem Res Toxicol; 2012 Nov; 25(11):2352-67. PubMed ID: 22992039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.
    Kiwamoto R; Spenkelink A; Rietjens IM; Punt A
    Toxicol Appl Pharmacol; 2015 Jan; 282(1):108-17. PubMed ID: 25448044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic evaluation of the use of physiologically based pharmacokinetic modeling for cross-species extrapolation.
    Thiel C; Schneckener S; Krauss M; Ghallab A; Hofmann U; Kanacher T; Zellmer S; Gebhardt R; Hengstler JG; Kuepfer L
    J Pharm Sci; 2015 Jan; 104(1):191-206. PubMed ID: 25393841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavonoids and alkenylbenzenes: New concepts in bioactivation studies.
    Rietjens IM; Al Huseiny W; Boersma MG
    Chem Biol Interact; 2011 Jun; 192(1-2):87-95. PubMed ID: 20863818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of research activities and research needs to increase the impact and applicability of alternative testing strategies in risk assessment practice.
    Punt A; Schiffelers MJ; Jean Horbach G; van de Sandt JJ; Groothuis GM; Rietjens IM; Blaauboer BJ
    Regul Toxicol Pharmacol; 2011 Oct; 61(1):105-14. PubMed ID: 21782875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.
    Kirman CR; Sweeney LM; Corley R; Gargas ML
    Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of anatomical and kinetic models in the evaluation of human food additive safety.
    Roth WL
    AAPS J; 2005 Sep; 7(2):E328-34. PubMed ID: 16353912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in human plasma.
    Brightman FA; Leahy DE; Searle GE; Thomas S
    Drug Metab Dispos; 2006 Jan; 34(1):94-101. PubMed ID: 16221756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of mathematical models used in data extrapolation.
    Jones HB; Grendon A
    Clin Toxicol; 1976; 9(5):791-7. PubMed ID: 1000906
    [No Abstract]   [Full Text] [Related]  

  • 15. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological models for phytochemical research: from cell to human organism.
    Mortensen A; Sorensen IK; Wilde C; Dragoni S; Mullerová D; Toussaint O; Zloch Z; Sgaragli G; Ovesná J
    Br J Nutr; 2008 May; 99 E Suppl 1():ES118-26. PubMed ID: 18503732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating physiological and biochemical mechanisms into pharmacokinetic-pharmacodynamic models: a conceptual framework.
    Dahl SG; Aarons L; Gundert-Remy U; Karlsson MO; Schneider YJ; Steimer JL; Trocóniz IF
    Basic Clin Pharmacol Toxicol; 2010 Jan; 106(1):2-12. PubMed ID: 19686541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Occurrence of Giardia species and genotypes in humans and animals in Wielkopolska region, Poland].
    Solarczyk P
    Wiad Parazytol; 2009; 55(4):459-62. PubMed ID: 20209826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Framework for evaluation of physiologically-based pharmacokinetic models for use in safety or risk assessment.
    Clark LH; Setzer RW; Barton HA
    Risk Anal; 2004 Dec; 24(6):1697-717. PubMed ID: 15660623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologically based kinetic modeling of the bioactivation of myristicin.
    Al-Malahmeh AJ; Al-Ajlouni A; Wesseling S; Soffers AE; Al-Subeihi A; Kiwamoto R; Vervoort J; Rietjens IM
    Arch Toxicol; 2017 Feb; 91(2):713-734. PubMed ID: 27334372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.