These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21520849)

  • 1. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space.
    Kouznetsov A; Tambasco M
    Med Phys; 2011 Mar; 38(3):1378-88. PubMed ID: 21520849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W; Kolditz D; Beister M; Bohle R; Kalender WA
    Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a kilovoltage x-ray source model for computing imaging dose.
    Poirier Y; Kouznetsov A; Koger B; Tambasco M
    Med Phys; 2014 Apr; 41(4):041915. PubMed ID: 24694146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear Boltzmann equation solver for voxel-level dosimetry in radiopharmaceutical therapy: Comparison with Monte Carlo and kernel convolution.
    Kayal G; Van B; Andl G; Tu C; Wareing T; Wilderman S; Mikell J; Dewaraja YK
    Med Phys; 2024 Mar; ():. PubMed ID: 38436493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simplified approach to characterizing a kilovoltage source spectrum for accurate dose computation.
    Poirier Y; Kouznetsov A; Tambasco M
    Med Phys; 2012 Jun; 39(6):3041-50. PubMed ID: 22755689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method.
    Norris ET; Liu X; Hsieh J
    Med Phys; 2015 Jul; 42(7):4080-7. PubMed ID: 26133608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast, linear Boltzmann transport equation solver for computed tomography dose calculation (Acuros CTD).
    Wang A; Maslowski A; Wareing T; Star-Lack J; Schmidt TG
    Med Phys; 2019 Feb; 46(2):925-933. PubMed ID: 30471131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.
    Bazalova M; Carrier JF; Beaulieu L; Verhaegen F
    Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic linear Boltzmann transport equation solver for patient-specific CT dose estimation: Comparison against a Monte Carlo benchmark for realistic scanner configurations and patient models.
    Principi S; Wang A; Maslowski A; Wareing T; Jordan P; Schmidt TG
    Med Phys; 2020 Dec; 47(12):6470-6483. PubMed ID: 32981038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GMctdospp: Description and validation of a CT dose calculation system.
    Schmidt R; Wulff J; Zink K
    Med Phys; 2015 Jul; 42(7):4260-70. PubMed ID: 26133624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation absorbed doses at compact bone-titanium interfaces in diagnostic radiography: a Monte Carlo approach.
    Nicopoulou-Karayianni K; Koligliatis T; Donta-Bakogianni C; Karayiannis A; Litsas J
    Dentomaxillofac Radiol; 2003 Sep; 32(5):327-32. PubMed ID: 14709609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient.
    Bueno G; Déniz O; Carrascosa CB; Delgado JM; Brualla L
    Med Phys; 2009 Nov; 36(11):5162-74. PubMed ID: 19994526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo calculation of radiation dose in CT examinations using phantom and patient tomographic models.
    Salvadó M; López M; Morant JJ; Calzado A
    Radiat Prot Dosimetry; 2005; 114(1-3):364-8. PubMed ID: 15933138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric variation due to the photon beam energy in the small-animal irradiation: a Monte Carlo study.
    Chow JC; Leung MK; Lindsay PE; Jaffray DA
    Med Phys; 2010 Oct; 37(10):5322-9. PubMed ID: 21089767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT dose equilibration and energy absorption in polyethylene cylinders with diameters from 6 to 55 cm.
    Li X; Zhang D; Liu B
    Med Phys; 2015 Jun; 42(6):2882-91. PubMed ID: 26127041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4.
    Ahmad SB; Sarfehnia A; Paudel MR; Kim A; Hissoiny S; Sahgal A; Keller B
    Med Phys; 2016 Feb; 43(2):894-907. PubMed ID: 26843250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Monte Carlo simulation for patient-specific CT/CBCT imaging dose calculation.
    Jia X; Yan H; Gu X; Jiang SB
    Phys Med Biol; 2012 Feb; 57(3):577-90. PubMed ID: 22222686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part I. Development and validation of methods using the CT image.
    Wang J; Duan X; Christner JA; Leng S; Yu L; McCollough CH
    Med Phys; 2012 Nov; 39(11):6764-71. PubMed ID: 23127070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.