These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21520938)

  • 1. Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates.
    Kim A; Ou FS; Ohlberg DA; Hu M; Williams RS; Li Z
    J Am Chem Soc; 2011 Jun; 133(21):8234-9. PubMed ID: 21520938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Density functional theory calculation of SERS spectra of trans-1,2-bis(4-pyridyl)-ethylene on silver].
    Zhuang ZP; Zhao B; Chen YF; Zuo MH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Aug; 31(8):2123-6. PubMed ID: 22007400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanofingers for molecule trapping and detection.
    Hu M; Ou FS; Wu W; Naumov I; Li X; Bratkovsky AM; Williams RS; Li Z
    J Am Chem Soc; 2010 Sep; 132(37):12820-2. PubMed ID: 20795668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Langmuir-Blodgett phospholipidic films deposited on surface enhanced Raman scattering active gold nanoparticle monolayers.
    Bernard S; Felidj N; Truong S; Peretti P; Lévi G; Aubard J
    Biopolymers; 2002; 67(4-5):314-8. PubMed ID: 12012456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering of trans-1,2-bis (4-pyridyl)-ethylene on silver by theory calculations.
    Zhuang Z; Shi X; Chen Y; Zuo M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1593-9. PubMed ID: 21680230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of a multiwell array SERS chip with biological applications.
    Abell JL; Driskell JD; Dluhy RA; Tripp RA; Zhao YP
    Biosens Bioelectron; 2009 Aug; 24(12):3663-70. PubMed ID: 19556119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First steps of in situ surface-enhanced Raman scattering during shipboard experiments.
    Péron O; Rinnert E; Colas F; Lehaitre M; Compère C
    Appl Spectrosc; 2010 Oct; 64(10):1086-93. PubMed ID: 20925977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy.
    Wu W; Hu M; Ou FS; Li Z; Williams RS
    Nanotechnology; 2010 Jun; 21(25):255502. PubMed ID: 20508315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced raman spectroscopy.
    Fan JG; Zhao YP
    Langmuir; 2008 Dec; 24(24):14172-5. PubMed ID: 19053654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and mechanical strain resistant large area SERS active substrates.
    Singh JP; Chu H; Abell J; Tripp RA; Zhao Y
    Nanoscale; 2012 Jun; 4(11):3410-4. PubMed ID: 22544280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules.
    Blackie EJ; Le Ru EC; Etchegoin PG
    J Am Chem Soc; 2009 Oct; 131(40):14466-72. PubMed ID: 19807188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman spectroscopy and density functional theory study on 4,4'-bipyridine molecule.
    Zhuang Z; Cheng J; Wang X; Zhao B; Han X; Luo Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):509-16. PubMed ID: 16987698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the effects of the local environment on the surface-enhanced Raman spectra of striped gold/silver nanorod arrays.
    Broglin BL; Andreu A; Dhussa N; Heath JA; Gerst J; Dudley B; Holland D; El-Kouedi M
    Langmuir; 2007 Apr; 23(8):4563-8. PubMed ID: 17346064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold particle interaction in regular arrays probed by surface enhanced Raman scattering.
    Félidj N; Truong SL; Aubard J; Lévi G; Krenn JR; Hohenau A; Leitner A; Aussenegg FR
    J Chem Phys; 2004 Apr; 120(15):7141-6. PubMed ID: 15267619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aligned silver nanorod arrays for surface-enhanced Raman scattering.
    Yang Y; Xiong L; Shi J; Nogami M
    Nanotechnology; 2006 May; 17(10):2670-4. PubMed ID: 21727523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering.
    Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP
    Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced hyper-Raman scattering (SEHRS) on Ag film over Nanosphere (FON) electrodes: surface symmetry of centrosymmetric adsorbates.
    Hulteen JC; Young MA; Van Duyne RP
    Langmuir; 2006 Dec; 22(25):10354-64. PubMed ID: 17129003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy.
    Ruan C; Eres G; Wang W; Zhang Z; Gu B
    Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ surface-enhanced Raman scattering and X-ray photoelectron spectroscopic investigation of coenzyme Q10 on silver electrode.
    Li D; Li DW; Fossey JS; Long YT
    Phys Chem Chem Phys; 2011 Feb; 13(6):2259-65. PubMed ID: 21152486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.