These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21520956)

  • 1. Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone.
    Sawada T; Gellman SH
    J Am Chem Soc; 2011 May; 133(19):7336-9. PubMed ID: 21520956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Backbone Pattern and Residue Substitution on Helicity in α/β/γ-Peptides.
    Shin YH; Gellman SH
    J Am Chem Soc; 2018 Jan; 140(4):1394-1400. PubMed ID: 29350033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helix formation in preorganized beta/gamma-peptide foldamers: hydrogen-bond analogy to the alpha-helix without alpha-amino acid residues.
    Guo L; Almeida AM; Zhang W; Reidenbach AG; Choi SH; Guzei IA; Gellman SH
    J Am Chem Soc; 2010 Jun; 132(23):7868-9. PubMed ID: 20491510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Effects of β
    Eddinger GA; Gellman SH
    Angew Chem Int Ed Engl; 2018 Oct; 57(42):13829-13832. PubMed ID: 30161284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation.
    Patgiri A; Jochim AL; Arora PS
    Acc Chem Res; 2008 Oct; 41(10):1289-300. PubMed ID: 18630933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural consequences of beta-amino acid preorganization in a self-assembling alpha/beta-peptide: fundamental studies of foldameric helix bundles.
    Price JL; Horne WS; Gellman SH
    J Am Chem Soc; 2010 Sep; 132(35):12378-87. PubMed ID: 20718422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic study of fundamentals in α-helical coiled coil mimicry by alternating sequences of β- and γ-amino acids.
    Rezaei Araghi R; Baldauf C; Gerling UI; Cadicamo CD; Koksch B
    Amino Acids; 2011 Aug; 41(3):733-42. PubMed ID: 21638022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helix formation in alpha,gamma- and beta,gamma-hybrid peptides: theoretical insights into mimicry of alpha- and beta-peptides.
    Baldauf C; Günther R; Hofmann HJ
    J Org Chem; 2006 Feb; 71(3):1200-8. PubMed ID: 16438538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of a side chain-backbone swap on protein stability.
    Flinders KT; Yu YB; Flynn PF
    J Pept Res; 2004 Jan; 63(1):17-22. PubMed ID: 14984569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of γ-Amino Acid Residue Preorganization on α/γ-Peptide Foldamer Helicity in Aqueous Solution.
    Fisher BF; Gellman SH
    J Am Chem Soc; 2016 Aug; 138(34):10766-9. PubMed ID: 27529788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. α-Helix mimicry with α/β-peptides.
    Johnson LM; Gellman SH
    Methods Enzymol; 2013; 523():407-29. PubMed ID: 23422441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the amino acid sequence on the conformation of side chain lactam-bridged octapeptides.
    Neukirchen S; Krieger V; Roschger C; Schubert M; Elsässer B; Cabrele C
    J Pept Sci; 2017 Jul; 23(7-8):587-596. PubMed ID: 28370688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Chiral β-Double Helices from γ-Peptide Foldamers.
    Pahan S; Dey S; George G; Mahapatra SP; Puneeth Kumar DR; Gopi HN
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202316309. PubMed ID: 38009917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of cyclically constrained γ-residues stabilizes an α-peptide hairpin in aqueous solution.
    Lengyel GA; Eddinger GA; Horne WS
    Org Lett; 2013 Feb; 15(4):944-7. PubMed ID: 23390979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons in the solution and micelle-associated states.
    Neidigh JW; Fesinmeyer RM; Prickett KS; Andersen NH
    Biochemistry; 2001 Nov; 40(44):13188-200. PubMed ID: 11683627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3(10)-helical pentapeptide in water: interplay of alpha,alpha-disubstituted amino acids and the central residue on structure formation.
    Wang J; McElheny D; Fu Y; Li G; Kim J; Zhou Z; Wu L; Keiderling TA; Hammer RP
    Biopolymers; 2009; 92(5):452-64. PubMed ID: 19489061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helix macrodipole control of beta 3 peptide 14-helix stability in water.
    Hart SA; Bahadoor AB; Matthews EE; Qiu XJ; Schepartz A
    J Am Chem Soc; 2003 Apr; 125(14):4022-3. PubMed ID: 12670203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 12/14/14-Helix Formation in 2:1 α/β-Hybrid Peptides Containing Bicyclo[2.2.2]octane Ring Constraints.
    Legrand B; André C; Moulat L; Didierjean C; Hermet P; Bantignies JL; Martinez J; Amblard M; Calmès M
    Chemistry; 2016 Aug; 22(34):11986-90. PubMed ID: 27311099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.