These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 21520979)

  • 1. On the relationship between sensitivity coefficients and transfer functions of reaction kinetic networks.
    Drengstig T; Kjosmoen T; Ruoff P
    J Phys Chem B; 2011 May; 115(19):6272-8. PubMed ID: 21520979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and control analysis of periodically forced reaction networks using the Green's function method.
    Nikolaev EV; Atlas JC; Shuler ML
    J Theor Biol; 2007 Aug; 247(3):442-61. PubMed ID: 17481665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of steady-state control in complex metabolic networks.
    Bohnensack R
    Biomed Biochim Acta; 1985; 44(11-12):1567-78. PubMed ID: 4091833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling.
    Guebel DV
    In Silico Biol; 2004; 4(2):163-82. PubMed ID: 15107021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Control of molecular transformations in polyenzyme systems: quantitative theory of the regulation of metabolism].
    Kholodenko BN
    Mol Biol (Mosk); 1988; 22(5):1238-56. PubMed ID: 3221852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of complex reaction mechanisms. Analysis of chemical, biological and genetic networks.
    Ross J
    J Phys Chem A; 2008 Mar; 112(11):2134-43. PubMed ID: 18275175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization-based metabolic control analysis.
    Uygun K; Uygun B; Matthew HW; Huang Y
    Biotechnol Prog; 2010; 26(6):1567-79. PubMed ID: 20967921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring dynamic properties of biochemical reaction networks from structural knowledge.
    Klipp E; Liebermeister W; Wierling C
    Genome Inform; 2004; 15(1):125-37. PubMed ID: 15712116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective parameters determining the information flow in hierarchical biological systems.
    Blöchl F; Wittmann DM; Theis FJ
    Bull Math Biol; 2011 Apr; 73(4):706-25. PubMed ID: 21181504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllability of non-linear biochemical systems.
    Ervadi-Radhakrishnan A; Voit EO
    Math Biosci; 2005 Jul; 196(1):99-123. PubMed ID: 15982674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A second-order approach to metabolic control analysis.
    Höfer T; Heinrich R
    J Theor Biol; 1993 Sep; 164(1):85-102. PubMed ID: 8264245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory.
    Shiraishi F; Hatoh Y; Irie T
    J Theor Biol; 2005 May; 234(1):79-85. PubMed ID: 15721037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New experimental and theoretical tools for metabolic engineering of micro-organisms.
    Heijnen JJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistency between kinetics and thermodynamics: general scaling conditions for reaction rates of nonlinear chemical systems without constraints far from equilibrium.
    Vlad MO; Popa VT; Ross J
    J Phys Chem A; 2011 Feb; 115(4):507-13. PubMed ID: 21182240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control analysis in terms of generalized variables characterizing metabolic systems.
    Schuster S
    J Theor Biol; 1996 Oct; 182(3):259-68. PubMed ID: 8944157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General equation of steady-state enzyme kinetics using net rate constants and its applicaiton to the kinetic analysis of catalase reaction.
    Yomo T; Yamano T; Yamamoto K; Urabe I
    J Theor Biol; 1997 Oct; 188(3):301-12. PubMed ID: 9344734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.