BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 21521004)

  • 21. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The co-transplantation of human bone marrow stromal cells and embryo olfactory ensheathing cells as a new approach to treat spinal cord injury in a rat model.
    Deng YB; Liu Y; Zhu WB; Bi XB; Wang YZ; Ye MH; Zhou GQ
    Cytotherapy; 2008; 10(6):551-64. PubMed ID: 18608352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone morphogenetic proteins prevent bone marrow stromal cell-mediated oligodendroglial differentiation of transplanted adult neural progenitor cells in the injured spinal cord.
    Sandner B; Rivera FJ; Caioni M; Nicholson L; Eckstein V; Bogdahn U; Aigner L; Blesch A; Weidner N
    Stem Cell Res; 2013 Sep; 11(2):758-71. PubMed ID: 23770801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined treatment with platelet-rich plasma and brain-derived neurotrophic factor-overexpressing bone marrow stromal cells supports axonal remyelination in a rat spinal cord hemi-section model.
    Zhao T; Yan W; Xu K; Qi Y; Dai X; Shi Z
    Cytotherapy; 2013 Jul; 15(7):792-804. PubMed ID: 23731762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The therapeutic effects of human adipose-derived stem cells in a rat cervical spinal cord injury model.
    Kolar MK; Kingham PJ; Novikova LN; Wiberg M; Novikov LN
    Stem Cells Dev; 2014 Jul; 23(14):1659-74. PubMed ID: 24803143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury.
    Ramer LM; Au E; Richter MW; Liu J; Tetzlaff W; Roskams AJ
    J Comp Neurol; 2004 May; 473(1):1-15. PubMed ID: 15067714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chondroitinase administration and pcDNA3.1-BDNF-BMSC transplantation promote motor functional recovery associated with NGF expression in spinal cord-transected rat.
    Xiong LL; Li Y; Shang FF; Chen SW; Chen H; Ju SM; Zou Y; Tian HL; Wang TH; Luo CZ; Wang XY
    Spinal Cord; 2016 Dec; 54(12):1088-1095. PubMed ID: 27349609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats.
    Liang H; Liang P; Xu Y; Wu J; Liang T; Xu X
    J Neurotrauma; 2009 Oct; 26(10):1745-57. PubMed ID: 19413502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model.
    Chiba Y; Kuroda S; Maruichi K; Osanai T; Hokari M; Yano S; Shichinohe H; Hida K; Iwasaki Y
    Neurosurgery; 2009 May; 64(5):991-9; discussion 999-1000. PubMed ID: 19404159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice.
    Lee J; Kuroda S; Shichinohe H; Ikeda J; Seki T; Hida K; Tada M; Sawada K; Iwasaki Y
    Neuropathology; 2003 Sep; 23(3):169-80. PubMed ID: 14570283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intranasal delivery of bone marrow stromal cells to spinal cord lesions.
    Ninomiya K; Iwatsuki K; Ohnishi Y; Ohkawa T; Yoshimine T
    J Neurosurg Spine; 2015 Jul; 23(1):111-9. PubMed ID: 25840039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats.
    Nakano N; Nakai Y; Seo TB; Homma T; Yamada Y; Ohta M; Suzuki Y; Nakatani T; Fukushima M; Hayashibe M; Ide C
    PLoS One; 2013; 8(9):e73494. PubMed ID: 24039961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rubrospinal neurons fail to respond to brain-derived neurotrophic factor applied to the spinal cord injury site 2 months after cervical axotomy.
    Kwon BK; Liu J; Oschipok L; Teh J; Liu ZW; Tetzlaff W
    Exp Neurol; 2004 Sep; 189(1):45-57. PubMed ID: 15296835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: a novel material for CNS tissue engineering.
    Itosaka H; Kuroda S; Shichinohe H; Yasuda H; Yano S; Kamei S; Kawamura R; Hida K; Iwasaki Y
    Neuropathology; 2009 Jun; 29(3):248-57. PubMed ID: 18992011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection.
    Luo J; Zhang HT; Jiang XD; Xue S; Ke YQ
    Acta Neurochir (Wien); 2009 Nov; 151(11):1483-92. PubMed ID: 19499175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury.
    Macias MY; Syring MB; Pizzi MA; Crowe MJ; Alexanian AR; Kurpad SN
    Exp Neurol; 2006 Oct; 201(2):335-48. PubMed ID: 16839548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone Marrow Stromal Cells Combined With a Honeycomb Collagen Sponge Facilitate Neurite Elongation In Vitro and Neural Restoration in the Hemisected Rat Spinal Cord.
    Onuma-Ukegawa M; Bhatt K; Hirai T; Kaburagi H; Sotome S; Wakabayashi Y; Ichinose S; Shinomiya K; Okawa A; Enomoto M
    Cell Transplant; 2015; 24(7):1283-97. PubMed ID: 24911956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.
    Flora G; Joseph G; Patel S; Singh A; Bleicher D; Barakat DJ; Louro J; Fenton S; Garg M; Bunge MB; Pearse DD
    Cell Transplant; 2013; 22(12):2203-17. PubMed ID: 23146351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats.
    Ding Y; Yan Q; Ruan JW; Zhang YQ; Li WJ; Zeng X; Huang SF; Zhang YJ; Wu JL; Fisher D; Dong H; Zeng YS
    Cell Transplant; 2013; 22(1):65-86. PubMed ID: 23006476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.