These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 21521504)
1. Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster. Cuadrado A; Jouve N BMC Genomics; 2011 Apr; 12():205. PubMed ID: 21521504 [TBL] [Abstract][Full Text] [Related]
2. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cuadrado A; Cardoso M; Jouve N Cytogenet Genome Res; 2008; 120(3-4):210-9. PubMed ID: 18504349 [TBL] [Abstract][Full Text] [Related]
3. Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Cuadrado A; Cardoso M; Jouve N Genome; 2008 Oct; 51(10):809-15. PubMed ID: 18923532 [TBL] [Abstract][Full Text] [Related]
4. The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Cuadrado A; Jouve N Chromosome Res; 2007; 15(6):711-20. PubMed ID: 17874212 [TBL] [Abstract][Full Text] [Related]
5. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Lohe AR; Hilliker AJ; Roberts PA Genetics; 1993 Aug; 134(4):1149-74. PubMed ID: 8375654 [TBL] [Abstract][Full Text] [Related]
6. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Cuadrado Á; Jouve N Chromosoma; 2010 Oct; 119(5):495-503. PubMed ID: 20393739 [TBL] [Abstract][Full Text] [Related]
7. Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes. Cuadrado A; Jouve N Cytogenet Genome Res; 2007; 119(1-2):91-9. PubMed ID: 18160787 [TBL] [Abstract][Full Text] [Related]
8. The characterization of DINE-1, a short, interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster. Locke J; Howard LT; Aippersbach N; Podemski L; Hodgetts RB Chromosoma; 1999 Nov; 108(6):356-66. PubMed ID: 10591995 [TBL] [Abstract][Full Text] [Related]
9. Fluorescent in situ hybridization with transposable element probes to mitotic chromosomal heterochromatin of Drosophila. Dimitri P Methods Mol Biol; 2004; 260():29-39. PubMed ID: 15020800 [TBL] [Abstract][Full Text] [Related]
10. Intercalary heterochromatin in Drosophila. III. Homology between DNA sequences from the Y chromosome, bases of polytene chromosome limbs, and chromosome 4 of D. melanogaster. Kholodilov NG; Bolshakov VN; Blinov VM; Solovyov VV; Zhimulev IF Chromosoma; 1988 Nov; 97(3):247-53. PubMed ID: 3146482 [TBL] [Abstract][Full Text] [Related]
11. Pattern of chromosomal localization of the Hoppel transposable element family in the Drosophila melanogaster subgroup. Coelho PA; Queiroz-Machado J; Hartl D; Sunkel CE Chromosome Res; 1998 Aug; 6(5):385-95. PubMed ID: 9872668 [TBL] [Abstract][Full Text] [Related]
12. Organization and possible origin of the Bari-1 cluster in the heterochromatic h39 region of Drosophila melanogaster. Marsano RM; Milano R; Minervini C; Moschetti R; Caggese C; Barsanti P; Caizzi R Genetica; 2003 Mar; 117(2-3):281-9. PubMed ID: 12723707 [TBL] [Abstract][Full Text] [Related]
13. Frequency and coverage of trinucleotide repeats in eukaryotes. Astolfi P; Bellizzi D; Sgaramella V Gene; 2003 Oct; 317(1-2):117-25. PubMed ID: 14604799 [TBL] [Abstract][Full Text] [Related]
14. FISH analysis of Drosophila melanogaster heterochromatin using BACs and P elements. Corradini N; Rossi F; Vernì F; Dimitri P Chromosoma; 2003 Jul; 112(1):26-37. PubMed ID: 12827380 [TBL] [Abstract][Full Text] [Related]
15. Global heterochromatic colocalization of transposable elements with minisatellites in the compact genome of the pufferfish Tetraodon nigroviridis. Fischer C; Bouneau L; Coutanceau JP; Weissenbach J; Volff JN; Ozouf-Costaz C Gene; 2004 Jul; 336(2):175-83. PubMed ID: 15246529 [TBL] [Abstract][Full Text] [Related]
16. Normal segregation of a foreign-species chromosome during Drosophila female meiosis despite extensive heterochromatin divergence. Gilliland WD; Colwell EM; Osiecki DM; Park S; Lin D; Rathnam C; Barbash DA Genetics; 2015 Jan; 199(1):73-83. PubMed ID: 25406466 [TBL] [Abstract][Full Text] [Related]
17. [Hoppel-family of mobile elements of Drosophila melanogaster, flanked by short inverted repeats and having preferential localization in the heterochromatin regions of the genome]. Kurenova EV; Leĭbovich BA; Bass IA; Bebikhov DV; Pavlova MN; Danilevskaia ON Genetika; 1990 Oct; 26(10):1701-12. PubMed ID: 2178142 [TBL] [Abstract][Full Text] [Related]
18. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster. He B; Caudy A; Parsons L; Rosebrock A; Pane A; Raj S; Wieschaus E Genome Res; 2012 Dec; 22(12):2507-19. PubMed ID: 22745230 [TBL] [Abstract][Full Text] [Related]
19. A strategy for mapping the heterochromatin of chromosome 2 of Drosophila melanogaster. Yasuhara JC; Marchetti M; Fanti L; Pimpinelli S; Wakimoto BT Genetica; 2003 Mar; 117(2-3):217-26. PubMed ID: 12723701 [TBL] [Abstract][Full Text] [Related]
20. Heterochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia-like elements (MDG1). Shevelyov YuYa ; Balakireva MD; Gvozdev VA Chromosoma; 1989 Aug; 98(2):117-22. PubMed ID: 2570681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]