These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21521509)

  • 1. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.
    Riemer R; Shapiro A
    J Neuroeng Rehabil; 2011 Apr; 8():22. PubMed ID: 21521509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.
    Mooney LM; Herr HM
    J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Controlled Slip" Energy Harvesting While Walking.
    Xia H; Chen DKY; Zhu X; Shull PB
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):437-443. PubMed ID: 31870988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking.
    Panizzolo FA; Galiana I; Asbeck AT; Siviy C; Schmidt K; Holt KG; Walsh CJ
    J Neuroeng Rehabil; 2016 May; 13(1):43. PubMed ID: 27169361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
    Dembia CL; Silder A; Uchida TK; Hicks JL; Delp SL
    PLoS One; 2017; 12(7):e0180320. PubMed ID: 28700630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoelectric Control for Adaptable Biomechanical Energy Harvesting.
    Selinger JC; Donelan JM
    IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):364-73. PubMed ID: 26841402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body motion for powering biomedical devices.
    Romero E; Warrington RO; Neuman MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2752-5. PubMed ID: 19964048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics and energetics of load carriage during human walking.
    Huang TW; Kuo AD
    J Exp Biol; 2014 Feb; 217(Pt 4):605-13. PubMed ID: 24198268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
    Donelan JM; Li Q; Naing V; Hoffer JA; Weber DJ; Kuo AD
    Science; 2008 Feb; 319(5864):807-10. PubMed ID: 18258914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.
    Shepertycky M; Li Q
    PLoS One; 2015; 10(6):e0127635. PubMed ID: 26039493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical knee energy harvester: Design optimization and testing.
    Gad M; Lev-Ari B; Shapiro A; Ben-David C; Riemer R
    Front Robot AI; 2022; 9():998248. PubMed ID: 36274915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking.
    Xu R; Zuo H; Ji Y; Li Q; Wang Z; Liu H; Wang J; Wei Z; Li W; Cong L; Li H; Jin H; Wang J
    Med Sci Monit; 2021 Mar; 27():e930081. PubMed ID: 33664219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.
    Zelik KE; Collins SH; Adamczyk PG; Segal AD; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Czerniecki JM; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):411-9. PubMed ID: 21708509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy harvesting from human walking to power biomedical devices using oscillating generation.
    Montoya JA; Mariscal DM; Romero E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4951-4954. PubMed ID: 28269379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking.
    Gruben KG; Boehm WL
    J Biomech; 2014 Apr; 47(6):1389-94. PubMed ID: 24524989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.