BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21521558)

  • 1. Controlled modulation of serum protein binding and biodistribution of asymmetric cyanine dyes by variation of the number of sulfonate groups.
    Hamann FM; Brehm R; Pauli J; Grabolle M; Frank W; Kaiser WA; Fischer D; Resch-Genger U; Hilger I
    Mol Imaging; 2011 Aug; 10(4):258-69. PubMed ID: 21521558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitable labels for molecular imaging--influence of dye structure and hydrophilicity on the spectroscopic properties of IgG conjugates.
    Pauli J; Grabolle M; Brehm R; Spieles M; Hamann FM; Wenzel M; Hilger I; Resch-Genger U
    Bioconjug Chem; 2011 Jul; 22(7):1298-308. PubMed ID: 21585199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of streptavidin on the absorption and fluorescence properties of cyanine dyes.
    Luschtinetz F; Dosche C; Kumke MU
    Bioconjug Chem; 2009 Mar; 20(3):576-82. PubMed ID: 19226170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spectrofluorometric detection of protein with a novel hydrophilic cyanine dye].
    Lin XC; Guo LQ; Lin YX; Xie ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1775-9. PubMed ID: 18051527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and photophysical properties of dUTP and internally DNA bound fluorophores for optimized signal detection in biological formats.
    Linck L; Kapusta P; Resch-Genger U
    Photochem Photobiol; 2012; 88(4):867-75. PubMed ID: 22360746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New fluorescent labels with tunable hydrophilicity for the rational design of bright optical probes for molecular imaging.
    Pauli J; Licha K; Berkemeyer J; Grabolle M; Spieles M; Wegner N; Welker P; Resch-Genger U
    Bioconjug Chem; 2013 Jul; 24(7):1174-85. PubMed ID: 23758616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative biodistribution in mice of cyanine dyes loaded in lipid nanoparticles.
    Mérian J; Boisgard R; Bayle PA; Bardet M; Tavitian B; Texier I
    Eur J Pharm Biopharm; 2015 Jun; 93():1-10. PubMed ID: 25805562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vivo spectral multiplexing approach for the cooperative imaging of different disease-related biomarkers with near-infrared fluorescent forster resonance energy transfer probes.
    Busch C; Schröter T; Grabolle M; Wenzel M; Kempe H; Kaiser WA; Resch-Genger U; Hilger I
    J Nucl Med; 2012 Apr; 53(4):638-46. PubMed ID: 22407968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo near-infrared fluorescence imaging of carcinoembryonic antigen-expressing tumor cells in mice.
    Lisy MR; Goermar A; Thomas C; Pauli J; Resch-Genger U; Kaiser WA; Hilger I
    Radiology; 2008 Jun; 247(3):779-87. PubMed ID: 18413884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro characterization study of new near infrared dyes for molecular imaging.
    Pauli J; Vag T; Haag R; Spieles M; Wenzel M; Kaiser WA; Resch-Genger U; Hilger I
    Eur J Med Chem; 2009 Sep; 44(9):3496-503. PubMed ID: 19269067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanine dyes as optical contrast agents for ophthalmological surgery.
    Langhals H; Varja A; Laubichler P; Kernt M; Eibl K; Haritoglou C
    J Med Chem; 2011 Jun; 54(11):3903-25. PubMed ID: 21524061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR screening of new carbocyanine dyes as ligands for affinity chromatography.
    Cruz C; Boto RE; Drzazga AK; Almeida P; Queiroz JA
    J Mol Recognit; 2014 Apr; 27(4):197-204. PubMed ID: 24591177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of leukotriene receptor CysLT1R in inflammatory diseases by molecular imaging with near-infrared fluorescence-based contrast agents.
    Busch C; Passon M; Wenzel M; Socher I; Kaiser WA; Hilger I
    Mol Imaging; 2011 Apr; 10(2):81-90. PubMed ID: 21439253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging.
    Pauli J; Brehm R; Spieles M; Kaiser WA; Hilger I; Resch-Genger U
    J Fluoresc; 2010 May; 20(3):681-93. PubMed ID: 20213244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric trimethine 3H-indocyanine dyes: efficient synthesis and protein labeling.
    Song F; Wang L; Qiao X; Wang B; Sun S; Fan J; Zhang L; Peng X
    Org Biomol Chem; 2010 Oct; 8(19):4249-51. PubMed ID: 20683533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of near-infrared cyanine dyes by serum albumin protein.
    Awasthi K; Nishimura G
    Photochem Photobiol Sci; 2011 Apr; 10(4):461-3. PubMed ID: 21152615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved photostability and fluorescence properties through polyfluorination of a cyanine dye.
    Renikuntla BR; Rose HC; Eldo J; Waggoner AS; Armitage BA
    Org Lett; 2004 Mar; 6(6):909-12. PubMed ID: 15012062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational approach to select small peptide molecular probes labeled with fluorescent cyanine dyes for in vivo optical imaging.
    Berezin MY; Guo K; Akers W; Livingston J; Solomon M; Lee H; Liang K; Agee A; Achilefu S
    Biochemistry; 2011 Apr; 50(13):2691-700. PubMed ID: 21329363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic study of a novel bis(heptamethine cyanine) dye and its interaction with human serum albumin.
    Patonay G; Kim JS; Kodagahally R; Strekowski L
    Appl Spectrosc; 2005 May; 59(5):682-90. PubMed ID: 15969815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanine dye labeling reagents for sulfhydryl groups.
    Ernst LA; Gupta RK; Mujumdar RB; Waggoner AS
    Cytometry; 1989 Jan; 10(1):3-10. PubMed ID: 2917472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.