These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 21521659)
1. Increasing capillary diameter and the incorporation of gelatin enhance axon outgrowth in alginate-based anisotropic hydrogels. Pawar K; Mueller R; Caioni M; Prang P; Bogdahn U; Kunz W; Weidner N Acta Biomater; 2011 Jul; 7(7):2826-34. PubMed ID: 21521659 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic and extrinsic determinants of central nervous system axon outgrowth into alginate-based anisotropic hydrogels. Pawar K; Prang P; Müller R; Caioni M; Bogdahn U; Kunz W; Weidner N Acta Biomater; 2015 Nov; 27():131-139. PubMed ID: 26310676 [TBL] [Abstract][Full Text] [Related]
3. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Prang P; Müller R; Eljaouhari A; Heckmann K; Kunz W; Weber T; Faber C; Vroemen M; Bogdahn U; Weidner N Biomaterials; 2006 Jul; 27(19):3560-9. PubMed ID: 16500703 [TBL] [Abstract][Full Text] [Related]
4. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026 [TBL] [Abstract][Full Text] [Related]
5. Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Hashimoto T; Suzuki Y; Kitada M; Kataoka K; Wu S; Suzuki K; Endo K; Nishimura Y; Ide C Exp Brain Res; 2002 Oct; 146(3):356-68. PubMed ID: 12232692 [TBL] [Abstract][Full Text] [Related]
6. Membrane-bound CSPG mediates growth cone outgrowth and substrate specificity by Schwann cell contact with the DRG neuron cell body and not via growth cone contact. Castro C; Kuffler DP Exp Neurol; 2006 Jul; 200(1):19-25. PubMed ID: 16530184 [TBL] [Abstract][Full Text] [Related]
7. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Balakrishnan B; Jayakrishnan A Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441 [TBL] [Abstract][Full Text] [Related]
8. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. Novikova LN; Mosahebi A; Wiberg M; Terenghi G; Kellerth JO; Novikov LN J Biomed Mater Res A; 2006 May; 77(2):242-52. PubMed ID: 16392134 [TBL] [Abstract][Full Text] [Related]
9. In situ gelable glycation-resistant hydrogels composed of gelatin and oxidized alginate. Zhang H; Liao H; Chen W J Biomater Sci Polym Ed; 2010; 21(3):329-42. PubMed ID: 20178689 [TBL] [Abstract][Full Text] [Related]
10. Regeneration of axons from adult rat retinal ganglion cells on cultured Schwann cells is not dependent on basal lamina. Hopkins JM; Bunge RP Glia; 1991; 4(1):46-55. PubMed ID: 1828786 [TBL] [Abstract][Full Text] [Related]
11. Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro. Wen X; Tresco PA J Biomed Mater Res A; 2006 Mar; 76(3):626-37. PubMed ID: 16287096 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. Nguyen TP; Lee BT J Biomater Appl; 2012 Sep; 27(3):311-21. PubMed ID: 21680610 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Balakrishnan B; Mohanty M; Umashankar PR; Jayakrishnan A Biomaterials; 2005 Nov; 26(32):6335-42. PubMed ID: 15919113 [TBL] [Abstract][Full Text] [Related]
14. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Awad HA; Wickham MQ; Leddy HA; Gimble JM; Guilak F Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416 [TBL] [Abstract][Full Text] [Related]
15. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Günther MI; Weidner N; Müller R; Blesch A Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141 [TBL] [Abstract][Full Text] [Related]
16. BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. McGrath AM; Novikova LN; Novikov LN; Wiberg M Brain Res Bull; 2010 Oct; 83(5):207-13. PubMed ID: 20633614 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of porous gelatin microfibers using an aqueous wet spinning process. Yang CY; Chiu CT; Chang YP; Wang YJ Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(4):173-6. PubMed ID: 19526441 [TBL] [Abstract][Full Text] [Related]
18. Guided differentiation of induced pluripotent stem cells into neuronal lineage in alginate-chitosan-gelatin hydrogels with surface neuron growth factor. Kuo YC; Wang CC Colloids Surf B Biointerfaces; 2013 Apr; 104():194-9. PubMed ID: 23369755 [TBL] [Abstract][Full Text] [Related]
19. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. Ning L; Xu Y; Chen X; Schreyer DJ J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482 [TBL] [Abstract][Full Text] [Related]
20. The differential in vitro and in vivo responses of bone marrow stromal cells on novel porous gelatin-alginate scaffolds. Yang C; Frei H; Rossi FM; Burt HM J Tissue Eng Regen Med; 2009 Dec; 3(8):601-14. PubMed ID: 19685485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]