These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21523510)

  • 21. Spatial Control of Biochemical Modification Cascades and Pathways.
    Alam-Nazki A; Krishnan J
    Biophys J; 2015 Jun; 108(12):2912-24. PubMed ID: 26083931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site specific protein labeling by enzymatic posttranslational modification.
    Sunbul M; Yin J
    Org Biomol Chem; 2009 Sep; 7(17):3361-71. PubMed ID: 19675886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks.
    Slawson C; Housley MP; Hart GW
    J Cell Biochem; 2006 Jan; 97(1):71-83. PubMed ID: 16237703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model.
    Asthagiri AR; Lauffenburger DA
    Biotechnol Prog; 2001; 17(2):227-39. PubMed ID: 11312698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NO signals in the haze: nitric oxide signalling in plant defence.
    Leitner M; Vandelle E; Gaupels F; Bellin D; Delledonne M
    Curr Opin Plant Biol; 2009 Aug; 12(4):451-8. PubMed ID: 19608448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades.
    Ortega F; Acerenza L; Westerhoff HV; Mas F; Cascante M
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1170-5. PubMed ID: 11830657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global identification of O-GlcNAc-modified proteins.
    Nandi A; Sprung R; Barma DK; Zhao Y; Kim SC; Falck JR; Zhao Y
    Anal Chem; 2006 Jan; 78(2):452-8. PubMed ID: 16408927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scaffolding proteins in cardiac myocytes.
    Chudasama NL; Marx SO; Steinberg SF
    Handb Exp Pharmacol; 2008; (186):301-25. PubMed ID: 18491058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two decades of new concepts in nitric oxide signaling: from the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modifications.
    Martínez-Ruiz A; Lamas S
    IUBMB Life; 2009 Feb; 61(2):91-8. PubMed ID: 18979538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Algebraic method for the analysis of signaling crosstalk.
    Matsubara Y; Kikuchi S; Sugimoto M; Oka K; Tomita M
    Artif Life; 2008; 14(1):81-94. PubMed ID: 18171132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A recurrent phospho-sumoyl switch in transcriptional repression and beyond.
    Yang XJ; Grégoire S
    Mol Cell; 2006 Sep; 23(6):779-86. PubMed ID: 16973431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple biochemical pathways far from steady state can provide switchlike and integrated responses.
    Di Talia S; Wieschaus EF
    Biophys J; 2014 Aug; 107(3):L1-L4. PubMed ID: 25099818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exact analysis of intrinsic qualitative features of phosphorelays using mathematical models.
    Knudsen M; Feliu E; Wiuf C
    J Theor Biol; 2012 May; 300():7-18. PubMed ID: 22266661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Open cascades as simple solutions to providing ultrasensitivity and adaptation in cellular signaling.
    Srividhya J; Li Y; Pomerening JR
    Phys Biol; 2011 Aug; 8(4):046005. PubMed ID: 21566270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.
    Catozzi S; Sepulchre JA
    Bull Math Biol; 2017 Aug; 79(8):1691-1735. PubMed ID: 28660544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating multiple signals into cell decisions by networks of protein modification cycles.
    Cerone L; Muñoz-Garcia J; Neufeld Z
    Biophys J; 2011 Oct; 101(7):1590-6. PubMed ID: 21961584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dual array-based approach to assess the abundance and posttranslational modification state of signaling proteins.
    Luckert K; Gujral TS; Chan M; Sevecka M; Joos TO; Sorger PK; Macbeath G; Pötz O
    Sci Signal; 2012 Jan; 5(206):pl1. PubMed ID: 22234610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regions of multistationarity in cascades of Goldbeter-Koshland loops.
    Giaroli M; Bihan F; Dickenstein A
    J Math Biol; 2019 Mar; 78(4):1115-1145. PubMed ID: 30415316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.