BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 21523631)

  • 81. The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies.
    Puel JL; Ruel J; Guitton M; Wang J; Pujol R
    Audiol Neurootol; 2002; 7(1):49-54. PubMed ID: 11914527
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Tsukushi is essential for the development of the inner ear.
    Miwa T; Ohta K; Ito N; Hattori S; Miyakawa T; Takeo T; Nakagata N; Song WJ; Minoda R
    Mol Brain; 2020 Mar; 13(1):29. PubMed ID: 32127020
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Expression of mRNA encoding extracellular matrix glycoproteins SPARC and SC1 is temporally and spatially regulated in the developing cochlea of the rat inner ear.
    Mothe AJ; Brown IR
    Hear Res; 2001 May; 155(1-2):161-74. PubMed ID: 11335086
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [The role of the spiral ganglion neurons in cochlear implants. Today and in future regenerative inner ear treatment].
    Euteneuer S; Hansen S; Ryan AF
    HNO; 2008 Apr; 56(4):457-60. PubMed ID: 18351308
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses.
    Moser T; Karagulyan N; Neef J; Jaime Tobón LM
    EMBO J; 2023 Dec; 42(23):e114587. PubMed ID: 37800695
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Hearing and glycoconjugates: localization of Le(y), Le(x) and sialosyl-Le(x) in guinea pig cochlea, particularly at the tectorial membrane and sensory epithelia of the organ of Corti.
    Hozawa K; Wataya H; Takasaka T; Fenderson BA; Hakomori S
    Glycobiology; 1993 Feb; 3(1):47-55. PubMed ID: 7680585
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Degeneration followed by partial regeneration of the organ of Corti in deafness (dn/dn) mice.
    Webster DB
    Exp Neurol; 1992 Jan; 115(1):27-31. PubMed ID: 1728569
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear.
    Tan WJT; Song L; Graham M; Schettino A; Navaratnam D; Yarbrough WG; Santos-Sacchi J; Ivanova AV
    Antioxid Redox Signal; 2017 Sep; 27(8):489-509. PubMed ID: 28135838
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Review series: The cell biology of hearing.
    Schwander M; Kachar B; Müller U
    J Cell Biol; 2010 Jul; 190(1):9-20. PubMed ID: 20624897
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Hereditary deafness in the cat. An electron microscopic study of the spiral ganglion.
    Elverland HH; Mair IW
    Acta Otolaryngol; 1980; 90(5-6):360-9. PubMed ID: 7211330
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Vacuolization and alterations of lysosomal membrane proteins in cochlear marginal cells contribute to hearing loss in neuraminidase 1-deficient mice.
    Wu X; Steigelman KA; Bonten E; Hu H; He W; Ren T; Zuo J; d'Azzo A
    Biochim Biophys Acta; 2010 Feb; 1802(2):259-68. PubMed ID: 19857571
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The role of aquaporins in hearing function and dysfunction.
    Ximenes-da-Silva A; Capra D; Sanz CK; Mendes CB; de Mattos Coelho Aguiar J; Moura-Neto V; DosSantos MF
    Eur J Cell Biol; 2022; 101(3):151252. PubMed ID: 35779359
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function.
    Gow A; Davies C; Southwood CM; Frolenkov G; Chrustowski M; Ng L; Yamauchi D; Marcus DC; Kachar B
    J Neurosci; 2004 Aug; 24(32):7051-62. PubMed ID: 15306639
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Distribution of pejvakin in human spiral ganglion: An immunohistochemical study.
    Liu W; Kinnefors A; Boström M; Edin F; Rask-Andersen H
    Cochlear Implants Int; 2013 Sep; 14(4):225-31. PubMed ID: 23407324
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Structure and development of cochlear afferent innervation in mammals.
    Defourny J; Lallemend F; Malgrange B
    Am J Physiol Cell Physiol; 2011 Oct; 301(4):C750-61. PubMed ID: 21753183
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Recent advancements in understanding the role of epigenetics in the auditory system.
    Mittal R; Bencie N; Liu G; Eshraghi N; Nisenbaum E; Blanton SH; Yan D; Mittal J; Dinh CT; Young JI; Gong F; Liu XZ
    Gene; 2020 Nov; 761():144996. PubMed ID: 32738421
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity.
    Shrestha BR; Chia C; Wu L; Kujawa SG; Liberman MC; Goodrich LV
    Cell; 2018 Aug; 174(5):1229-1246.e17. PubMed ID: 30078709
    [TBL] [Abstract][Full Text] [Related]  

  • 98. In silico analyses of mouse inner-ear transcripts.
    Klockars T; Perheentupa T; Dahl HH
    J Assoc Res Otolaryngol; 2003 Mar; 4(1):24-40. PubMed ID: 12072916
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Localization of beta1-adrenergic receptors in the cochlea and the vestibular labyrinth.
    Fauser C; Schimanski S; Wangemann P
    J Membr Biol; 2004 Sep; 201(1):25-32. PubMed ID: 15635809
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Hear the sounds: the role of G protein-coupled receptors in the cochlea.
    Zhang Z; Chai R
    Am J Physiol Cell Physiol; 2022 Oct; 323(4):C1088-C1099. PubMed ID: 35938679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.