These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
59 related articles for article (PubMed ID: 2152369)
1. The efficiency of covalent labeling of the pancreatic cholecystokinin receptor using a battery of crosslinkable and photolabile probes. Klueppelberg UG; Powers SP; Miller LJ Receptor; 1990-1991 Winter; 1(1-2):1-11. PubMed ID: 2152369 [TBL] [Abstract][Full Text] [Related]
2. Biochemical characterization of the cholecystokinin receptor on CHP212 human neuroblastoma cells. Klueppelberg UG; Molero X; Barrett RW; Miller LJ Mol Pharmacol; 1990 Aug; 38(2):159-63. PubMed ID: 2200953 [TBL] [Abstract][Full Text] [Related]
3. Photoaffinity labeling of rat pancreatic cholecystokinin type A receptor antagonist binding sites demonstrates the presence of a truncated cholecystokinin type A receptor. Poirot SS; Escrieut C; Dufresne M; Martinez J; Bouisson M; Vaysse N; Fourmy D Mol Pharmacol; 1994 Apr; 45(4):599-607. PubMed ID: 8183238 [TBL] [Abstract][Full Text] [Related]
4. Affinity labeling the bovine gallbladder cholecystokinin receptor using a battery of probes. Schjoldager B; Powers SP; Miller LJ Am J Physiol; 1988 Nov; 255(5 Pt 1):G579-86. PubMed ID: 3056035 [TBL] [Abstract][Full Text] [Related]
6. Differential docking of high-affinity peptide ligands to type A and B cholecystokinin receptors demonstrated by photoaffinity labeling. Dong M; Liu G; Pinon DI; Miller LJ Biochemistry; 2005 May; 44(17):6693-700. PubMed ID: 15850403 [TBL] [Abstract][Full Text] [Related]
7. A peptide agonist acts by occupation of a monomeric G protein-coupled receptor: dual sites of covalent attachment to domains near TM1 and TM7 of the same molecule make biologically significant domain-swapped dimerization unlikely. Hadac EM; Ji Z; Pinon DI; Henne RM; Lybrand TP; Miller LJ J Med Chem; 1999 Jun; 42(12):2105-11. PubMed ID: 10377216 [TBL] [Abstract][Full Text] [Related]
8. Protease peptide mapping of affinity-labeled rat pancreatic cholecystokinin-binding proteins. Klueppelberg UG; Powers SP; Miller LJ Biochemistry; 1989 Aug; 28(17):7124-9. PubMed ID: 2819053 [TBL] [Abstract][Full Text] [Related]
9. Use of a nitrotryptophan-containing peptide for photoaffinity labeling the pancreatic cholecystokinin receptor. Klueppelberg UG; Gaisano HY; Powers SP; Miller LJ Biochemistry; 1989 Apr; 28(8):3463-8. PubMed ID: 2742849 [TBL] [Abstract][Full Text] [Related]
10. Affinity labeling of a novel cholecystokinin-binding protein in rat pancreatic plasmalemma using new short probes for the receptor. Pearson RK; Miller LJ J Biol Chem; 1987 Jan; 262(2):869-76. PubMed ID: 3805011 [TBL] [Abstract][Full Text] [Related]
11. Use of the heterobifunctional cross-linker m-maleimidobenzoyl N-hydroxysuccinimide ester to affinity label cholecystokinin binding proteins on rat pancreatic plasma membranes. Madison LD; Rosenzweig SA; Jamieson JD J Biol Chem; 1984 Dec; 259(23):14818-23. PubMed ID: 6094576 [TBL] [Abstract][Full Text] [Related]
12. The biochemical characterization of the native pancreatic cholecystokinin receptor using affinity labeling approaches. Miller LJ Yale J Biol Med; 1992; 65(5):441-8; discussion 465-9. PubMed ID: 1340061 [TBL] [Abstract][Full Text] [Related]
13. Characterization of cholecystokinin receptors and messenger RNA expression in rat pancreas: evidence for expression of cholecystokinin-A receptors but not cholecystokinin-B (gastrin) receptors. Zhou W; Povoski SP; Bell RH J Surg Res; 1995 Mar; 58(3):281-9. PubMed ID: 7533864 [TBL] [Abstract][Full Text] [Related]
14. Cholecystokinin receptor characterization and cholecystokinin-A receptor messenger RNA expression in transgenic mouse pancreatic carcinomas and dysplastic pancreas. Povoski SP; Zhou W; Longnecker DS; Bell RH Oncol Res; 1994; 6(9):411-7. PubMed ID: 7703527 [TBL] [Abstract][Full Text] [Related]
15. Localization by photoaffinity labeling of natriuretic peptide receptor-A binding domain. McNicoll N; Gagnon J; Rondeau JJ; Ong H; De Léan A Biochemistry; 1996 Oct; 35(39):12950-6. PubMed ID: 8841141 [TBL] [Abstract][Full Text] [Related]
16. Functional and biochemical characterization of the human gallbladder muscularis cholecystokinin receptor. Schjoldager B; Molero X; Miller LJ Gastroenterology; 1989 Apr; 96(4):1119-25. PubMed ID: 2925056 [TBL] [Abstract][Full Text] [Related]
17. Use of photoaffinity probes containing poly(ethylene glycol) spacers for topographical mapping of the cholecystokinin receptor complex. Powers SP; Foo I; Pinon D; Klueppelberg UG; Hedstrom JF; Miller LJ Biochemistry; 1991 Jan; 30(3):676-82. PubMed ID: 1899032 [TBL] [Abstract][Full Text] [Related]
18. Direct identification of a distinct site of interaction between the carboxyl-terminal residue of cholecystokinin and the type A cholecystokinin receptor using photoaffinity labeling. Ji Z; Hadac EM; Henne RM; Patel SA; Lybrand TP; Miller LJ J Biol Chem; 1997 Sep; 272(39):24393-401. PubMed ID: 9305898 [TBL] [Abstract][Full Text] [Related]
19. Direct identification of a second distinct site of contact between cholecystokinin and its receptor. Hadac EM; Pinon DI; Ji Z; Holicky EL; Henne RM; Lybrand TP; Miller LJ J Biol Chem; 1998 May; 273(21):12988-93. PubMed ID: 9582333 [TBL] [Abstract][Full Text] [Related]
20. Biochemical characterization of the pancreatic cholecystokinin receptor using monofunctional photoactivatable probes. Pearson RK; Miller LJ; Powers SP; Hadac EM Pancreas; 1987; 2(1):79-84. PubMed ID: 3575316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]