BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21523905)

  • 1. Understanding osteoblast responses to stiff nanotopographies through experiments and computational simulations.
    Yang L; Chinthapenta V; Li Q; Stout D; Liang A; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2011 Jun; 97(4):375-82. PubMed ID: 21523905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of diamond nanocrystallinity on osteoblast functions.
    Yang L; Sheldon BW; Webster TJ
    Biomaterials; 2009 Jul; 30(20):3458-65. PubMed ID: 19339049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation.
    Yang L; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2009 Nov; 91(2):548-56. PubMed ID: 18985788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts.
    Kalbacova M; Rezek B; Baresova V; Wolf-Brandstetter C; Kromka A
    Acta Biomater; 2009 Oct; 5(8):3076-85. PubMed ID: 19433140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.
    Pareta R; Yang L; Kothari A; Sirinrath S; Xiao X; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2010 Oct; 95(1):129-36. PubMed ID: 20540097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions.
    Zhang L; Webster TJ
    Nanotechnology; 2012 Apr; 23(15):155101. PubMed ID: 22436863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces.
    Lechleitner T; Klauser F; Seppi T; Lechner J; Jennings P; Perco P; Mayer B; Steinmüller-Nethl D; Preiner J; Hinterdorfer P; Hermann M; Bertel E; Pfaller K; Pfaller W
    Biomaterials; 2008 Nov; 29(32):4275-84. PubMed ID: 18701160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation.
    Yu WQ; Jiang XQ; Zhang FQ; Xu L
    J Biomed Mater Res A; 2010 Sep; 94(4):1012-22. PubMed ID: 20694968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced growth and osteogenic differentiation of human osteoblast-like cells on boron-doped nanocrystalline diamond thin films.
    Grausova L; Kromka A; Burdikova Z; Eckhardt A; Rezek B; Vacik J; Haenen K; Lisa V; Bacakova L
    PLoS One; 2011; 6(6):e20943. PubMed ID: 21695172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces.
    Padial-Molina M; Galindo-Moreno P; Fernández-Barbero JE; O'Valle F; Jódar-Reyes AB; Ortega-Vinuesa JL; Ramón-Torregrosa PJ
    Acta Biomater; 2011 Feb; 7(2):771-8. PubMed ID: 20807595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greater endothelial cell responses on submicron and nanometer rough titanium surfaces.
    Lu J; Khang D; Webster TJ
    J Biomed Mater Res A; 2010 Sep; 94(4):1042-9. PubMed ID: 20694971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells.
    Elter P; Sickel F; Ewald A
    Acta Biomater; 2009 Jun; 5(5):1468-73. PubMed ID: 19250893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of Si and SiO(x) into diamond-like carbon films: impact on surface properties and osteoblast adhesion.
    Randeniya LK; Bendavid A; Martin PJ; Amin MS; Preston EW; Magdon Ismail FS; Coe S
    Acta Biomater; 2009 Jun; 5(5):1791-7. PubMed ID: 19233753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation.
    Amaral IF; Cordeiro AL; Sampaio P; Barbosa MA
    J Biomater Sci Polym Ed; 2007; 18(4):469-85. PubMed ID: 17540120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Staphylococcus epidermidis on osteoblast cell adhesion and viability on a Ti alloy surface in a microfluidic co-culture environment.
    Lee JH; Wang H; Kaplan JB; Lee WY
    Acta Biomater; 2010 Nov; 6(11):4422-9. PubMed ID: 20573556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability.
    Zheng Z; Zhang L; Kong L; Wang A; Gong Y; Zhang X
    J Biomed Mater Res A; 2009 May; 89(2):453-65. PubMed ID: 18431777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of mesenchymal stem cells onto highly adherent radio frequency-sputtered carbonated hydroxylapatite thin films.
    Sima LE; Stan GE; Morosanu CO; Melinescu A; Ianculescu A; Melinte R; Neamtu J; Petrescu SM
    J Biomed Mater Res A; 2010 Dec; 95(4):1203-14. PubMed ID: 20939052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological evaluation of ultrananocrystalline and nanocrystalline diamond coatings.
    Skoog SA; Kumar G; Zheng J; Sumant AV; Goering PL; Narayan RJ
    J Mater Sci Mater Med; 2016 Dec; 27(12):187. PubMed ID: 27796686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear optical properties of nanocrystalline diamond.
    Trojánek F; Zídek K; Dzurnák B; Kozák M; Malý P
    Opt Express; 2010 Jan; 18(2):1349-57. PubMed ID: 20173962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications.
    Bajaj P; Akin D; Gupta A; Sherman D; Shi B; Auciello O; Bashir R
    Biomed Microdevices; 2007 Dec; 9(6):787-94. PubMed ID: 17530409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.