BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21524143)

  • 1. Identification of organic materials in historic oil paintings using correlated extractionless surface-enhanced Raman scattering and fluorescence microscopy.
    Oakley LH; Dinehart SA; Svoboda SA; Wustholz KL
    Anal Chem; 2011 Jun; 83(11):3986-9. PubMed ID: 21524143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings.
    Frano KA; Mayhew HE; Svoboda SA; Wustholz KL
    Analyst; 2014 Dec; 139(24):6450-5. PubMed ID: 25340987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman spectroscopy: a direct method to identify colorants in various artist media.
    Brosseau CL; Rayner KS; Casadio F; Grzywacz CM; Van Duyne RP
    Anal Chem; 2009 Sep; 81(17):7443-7. PubMed ID: 19637904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy.
    Casadio F; Leona M; Lombardi JR; Van Duyne R
    Acc Chem Res; 2010 Jun; 43(6):782-91. PubMed ID: 20420359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment strategies for SERS analysis of indigo and Prussian blue in aged painted surfaces.
    Oakley LH; Fabian DM; Mayhew HE; Svoboda SA; Wustholz KL
    Anal Chem; 2012 Sep; 84(18):8006-12. PubMed ID: 22897697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering.
    Leona M; Decuzzi P; Kubic TA; Gates G; Lombardi JR
    Anal Chem; 2011 Jun; 83(11):3990-3. PubMed ID: 21524144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nanoparticle surface charge in surface-enhanced Raman scattering.
    Alvarez-Puebla RA; Arceo E; Goulet PJ; Garrido JJ; Aroca RF
    J Phys Chem B; 2005 Mar; 109(9):3787-92. PubMed ID: 16851426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample treatment considerations in the analysis of organic colorants by surface-enhanced Raman scattering.
    Pozzi F; Lombardi JR; Bruni S; Leona M
    Anal Chem; 2012 Apr; 84(8):3751-7. PubMed ID: 22462391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman spectroscopy analysis of house paint and wallpaper samples from an 18th century historic property.
    Harroun SG; Bergman J; Jablonski E; Brosseau CL
    Analyst; 2011 Sep; 136(17):3453-60. PubMed ID: 21267481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Pigment Mixtures in Art Using SERS: A Treatment Flowchart Approach.
    Roh JY; Matecki MK; Svoboda SA; Wustholz KL
    Anal Chem; 2016 Feb; 88(4):2028-32. PubMed ID: 26799174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis.
    Brosseau CL; Gambardella A; Casadio F; Grzywacz CM; Wouters J; Van Duyne RP
    Anal Chem; 2009 Apr; 81(8):3056-62. PubMed ID: 19317457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple strategy to improve surface-enhanced Raman scattering based on electrochemically prepared roughened silver substrates.
    Yang KH; Liu YC; Yu CC
    Langmuir; 2010 Jul; 26(13):11512-7. PubMed ID: 20524629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative SERS sensors for environmental analysis of naphthalene.
    Péron O; Rinnert E; Toury T; Lamy de la Chapelle M; Compère C
    Analyst; 2011 Mar; 136(5):1018-22. PubMed ID: 21165476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of organic colorants in historical painting layers using UV laser ablation surface-enhanced Raman microspectroscopy.
    Cesaratto A; Leona M; Lombardi JR; Comelli D; Nevin A; Londero P
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14373-7. PubMed ID: 25353694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-analyte single molecule SERS technique with simultaneous spatial resolution.
    Etchegoin PG; Le Ru EC; Fainstein A
    Phys Chem Chem Phys; 2011 Mar; 13(10):4500-6. PubMed ID: 21264391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of hydroxyl-group-terminated SERS-marker molecules on microAg particles by silanization.
    Xia L; Kim NH; Kim K
    J Colloid Interface Sci; 2007 Feb; 306(1):50-5. PubMed ID: 17084852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface.
    Jarvis RM; Brooker A; Goodacre R
    Anal Chem; 2004 Sep; 76(17):5198-202. PubMed ID: 15373461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy.
    Romero-Pastor J; Duran A; Rodríguez-Navarro AB; Van Grieken R; Cardell C
    Anal Chem; 2011 Nov; 83(22):8420-8. PubMed ID: 21981573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.