These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
539 related articles for article (PubMed ID: 21524571)
1. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Feng D; Chen Z; Xue S; Zhang W Bioresour Technol; 2011 Jun; 102(12):6710-6. PubMed ID: 21524571 [TBL] [Abstract][Full Text] [Related]
2. Identification of carbohydrates as the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta) and optimization of its productivity by nitrogen manipulation. Wang HT; Yao CH; Ai JN; Cao XP; Xue S; Wang WL Bioresour Technol; 2014 Nov; 171():298-304. PubMed ID: 25216035 [TBL] [Abstract][Full Text] [Related]
3. Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta). Wang HT; Meng YY; Cao XP; Ai JN; Zhou JN; Xue S; Wang WL Bioresour Technol; 2015 Feb; 177():282-8. PubMed ID: 25496949 [TBL] [Abstract][Full Text] [Related]
4. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis. Chi L; Yao C; Cao X; Xue S Bioresour Technol; 2016 Jan; 200():598-605. PubMed ID: 26547809 [TBL] [Abstract][Full Text] [Related]
5. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Mutanda T; Karthikeyan S; Bux F Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
7. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Rodolfi L; Chini Zittelli G; Bassi N; Padovani G; Biondi N; Bonini G; Tredici MR Biotechnol Bioeng; 2009 Jan; 102(1):100-12. PubMed ID: 18683258 [TBL] [Abstract][Full Text] [Related]
8. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397 [TBL] [Abstract][Full Text] [Related]
9. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592 [TBL] [Abstract][Full Text] [Related]
10. The feasibility of biodiesel production by microalgae using industrial wastewater. Wu LF; Chen PC; Huang AP; Lee CM Bioresour Technol; 2012 Jun; 113():14-8. PubMed ID: 22269054 [TBL] [Abstract][Full Text] [Related]
11. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Cheirsilp B; Torpee S Bioresour Technol; 2012 Apr; 110():510-6. PubMed ID: 22361073 [TBL] [Abstract][Full Text] [Related]
12. Effect of different phosphorus concentrations on biodiesel production from Isochrysis zhangjiangensis under nitrogen sufficiency or deprivation condition. Yu SJ; Hu H; Zheng H; Wang YQ; Pan SB; Zeng RJ Appl Microbiol Biotechnol; 2019 Jun; 103(12):5051-5059. PubMed ID: 31001744 [TBL] [Abstract][Full Text] [Related]
13. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Chen CY; Yeh KL; Aisyah R; Lee DJ; Chang JS Bioresour Technol; 2011 Jan; 102(1):71-81. PubMed ID: 20674344 [TBL] [Abstract][Full Text] [Related]
14. Marine microalgae selection and culture conditions optimization for biodiesel production. San Pedro A; González-López CV; Acién FG; Molina-Grima E Bioresour Technol; 2013 Apr; 134():353-61. PubMed ID: 23524159 [TBL] [Abstract][Full Text] [Related]
15. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus. Wang H; Gao L; Chen L; Guo F; Liu T Bioresour Technol; 2013 Aug; 142():39-44. PubMed ID: 23735788 [TBL] [Abstract][Full Text] [Related]
16. Growth and neutral lipid synthesis in green microalgae: a mathematical model. Packer A; Li Y; Andersen T; Hu Q; Kuang Y; Sommerfeld M Bioresour Technol; 2011 Jan; 102(1):111-7. PubMed ID: 20619638 [TBL] [Abstract][Full Text] [Related]
17. Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Kim G; Bae J; Lee K Bioresour Technol; 2016 Apr; 205():274-9. PubMed ID: 26827170 [TBL] [Abstract][Full Text] [Related]
18. Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Roopnarain A; Gray VM; Sym SD Bioresour Technol; 2014 Mar; 156():408-11. PubMed ID: 24534441 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Harwati TU; Willke T; Vorlop KD Bioresour Technol; 2012 Oct; 121():54-60. PubMed ID: 22858468 [TBL] [Abstract][Full Text] [Related]
20. Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: evaluation of its growth and biochemical composition. Popovich CA; Damiani C; Constenla D; Martínez AM; Freije H; Giovanardi M; Pancaldi S; Leonardi PI Bioresour Technol; 2012 Jun; 114():287-93. PubMed ID: 22449985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]