These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 21524815)
1. Wound healing gene therapy: cartilage regeneration induced by vascular endothelial growth factor plasmid. Kolostova K; Taltynov O; Pinterova D; Boubelik M; Raska O; Hozak P; Jirkovska M; Bobek V Am J Otolaryngol; 2012; 33(1):68-74. PubMed ID: 21524815 [TBL] [Abstract][Full Text] [Related]
2. Tissue repair driven by two different mechanisms of growth factor plasmids VEGF and NGF in mice auricular cartilage: regeneration mediated by administering growth factor plasmids. Kolostova K; Taltynov O; Pinterova D; Cegan M; Ceganova L; Jirkovska M; Bobek V Eur Arch Otorhinolaryngol; 2012 Jul; 269(7):1763-70. PubMed ID: 22072234 [TBL] [Abstract][Full Text] [Related]
3. Chimeric VEGF-ENZ7/PlGF specifically binding to VEGFR-2 accelerates skin wound healing via enhancement of neovascularization. Zheng Y; Watanabe M; Kuraishi T; Hattori S; Kai C; Shibuya M Arterioscler Thromb Vasc Biol; 2007 Mar; 27(3):503-11. PubMed ID: 17194893 [TBL] [Abstract][Full Text] [Related]
4. Systemically and topically supplemented leptin fails to reconstitute a normal angiogenic response during skin repair in diabetic ob/ob mice. Stallmeyer B; Pfeilschifter J; Frank S Diabetologia; 2001 Apr; 44(4):471-9. PubMed ID: 11357478 [TBL] [Abstract][Full Text] [Related]
5. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Silvestre JS; Tamarat R; Ebrahimian TG; Le-Roux A; Clergue M; Emmanuel F; Duriez M; Schwartz B; Branellec D; Lévy BI Circ Res; 2003 Jul; 93(2):114-23. PubMed ID: 12805240 [TBL] [Abstract][Full Text] [Related]
6. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Galiano RD; Tepper OM; Pelo CR; Bhatt KA; Callaghan M; Bastidas N; Bunting S; Steinmetz HG; Gurtner GC Am J Pathol; 2004 Jun; 164(6):1935-47. PubMed ID: 15161630 [TBL] [Abstract][Full Text] [Related]
8. In vivo study of angiogenic plasmid preparations--the bicistronic plasmid as a new type of drug for vascular diseases. Małecki M; Swoboda P; Jastrzebski Z; Janik P Acta Pol Pharm; 2004; 61(4):289-95. PubMed ID: 15575596 [TBL] [Abstract][Full Text] [Related]
9. Recombinant leptin administration improves early angiogenesis in full-thickness skin flaps: an experimental study. Liapakis IE; Anagnostoulis S; Karayiannakis AJ; Korkolis DP; Lambropoulou M; Arnaud E; Simopoulos CE In Vivo; 2008; 22(2):247-52. PubMed ID: 18468410 [TBL] [Abstract][Full Text] [Related]
10. Expression of vascular endothelial growth factor during the early stage of maxillofacial blast injury. Zhang CJ; Li HZ; Zhou SX; Yang J; Huang QY Chin J Dent Res; 2000 Dec; 3(4):40-3. PubMed ID: 11314086 [TBL] [Abstract][Full Text] [Related]
11. [Therapeutic angiogenesis through intramuscular injection of the gene for vascular endothelial growth factor (VEGF)]. Banga JD Ned Tijdschr Geneeskd; 2000 Jan; 144(3):113-6. PubMed ID: 10674116 [TBL] [Abstract][Full Text] [Related]
12. Tgf-beta antisense therapy increases angiogenic potential in human keratinocytes in vitro. Riedel K; Riedel F; Goessler UR; Germann G; Sauerbier M Arch Med Res; 2007 Jan; 38(1):45-51. PubMed ID: 17174722 [TBL] [Abstract][Full Text] [Related]
13. Sonic hedgehog intradermal gene therapy using a biodegradable poly(β-amino esters) nanoparticle to enhance wound healing. Park HJ; Lee J; Kim MJ; Kang TJ; Jeong Y; Um SH; Cho SW Biomaterials; 2012 Dec; 33(35):9148-56. PubMed ID: 23018131 [TBL] [Abstract][Full Text] [Related]
14. Exogenously-administered leptin increases early incisional wound angiogenesis in an experimental animal model. Liapakis IE; Anagnostoulis S; Karayiannakis AJ; Korkolis DP; Lambropoulou M; Anastakis D; Simopoulos C In Vivo; 2007; 21(5):797-801. PubMed ID: 18019414 [TBL] [Abstract][Full Text] [Related]
15. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Gao F; Liu Y; He Y; Yang C; Wang Y; Shi X; Wei G Matrix Biol; 2010 Mar; 29(2):107-16. PubMed ID: 19913615 [TBL] [Abstract][Full Text] [Related]
16. Local arginine supplementation results in sustained wound nitric oxide production and reductions in vascular endothelial growth factor expression and granulation tissue formation. Heffernan D; Dudley B; McNeil PL; Howdieshell TR J Surg Res; 2006 Jun; 133(1):46-54. PubMed ID: 16631200 [TBL] [Abstract][Full Text] [Related]
17. [Effect of vascular endothelial growth factor 165 gene transfection on repair of bone defect: experiment with rabbits]. Zhao DM; Yang JF; Wu SQ; Qiu LP; Liu JL; Wang HB; Xu FY; Cai JL Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(25):1778-82. PubMed ID: 17919388 [TBL] [Abstract][Full Text] [Related]
18. Formononetin accelerates wound repair by the regulation of early growth response factor-1 transcription factor through the phosphorylation of the ERK and p38 MAPK pathways. Huh JE; Nam DW; Baek YH; Kang JW; Park DS; Choi DY; Lee JD Int Immunopharmacol; 2011 Jan; 11(1):46-54. PubMed ID: 20959155 [TBL] [Abstract][Full Text] [Related]
19. Vascular endothelial growth factor-mediated angiogenesis inhibition and postoperative wound healing in rats. Roman CD; Choy H; Nanney L; Riordan C; Parman K; Johnson D; Beauchamp RD J Surg Res; 2002 Jun; 105(1):43-7. PubMed ID: 12069500 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of inducible nitric oxide synthase results in reductions in wound vascular endothelial growth factor expression, granulation tissue formation, and local perfusion. Howdieshell TR; Webb WL; Sathyanarayana ; McNeil PL Surgery; 2003 May; 133(5):528-37. PubMed ID: 12773981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]