These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 21525128)
1. Native homing endonucleases can target conserved genes in humans and in animal models. Barzel A; Privman E; Peeri M; Naor A; Shachar E; Burstein D; Lazary R; Gophna U; Pupko T; Kupiec M Nucleic Acids Res; 2011 Aug; 39(15):6646-59. PubMed ID: 21525128 [TBL] [Abstract][Full Text] [Related]
2. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Chan SH; Stoddard BL; Xu SY Nucleic Acids Res; 2011 Jan; 39(1):1-18. PubMed ID: 20805246 [TBL] [Abstract][Full Text] [Related]
3. SegH and Hef: two novel homing endonucleases whose genes replace the mobC and mobE genes in several T4-related phages. Sandegren L; Nord D; Sjöberg BM Nucleic Acids Res; 2005; 33(19):6203-13. PubMed ID: 16257983 [TBL] [Abstract][Full Text] [Related]
4. LAHEDES: the LAGLIDADG homing endonuclease database and engineering server. Taylor GK; Petrucci LH; Lambert AR; Baxter SK; Jarjour J; Stoddard BL Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W110-6. PubMed ID: 22570419 [TBL] [Abstract][Full Text] [Related]
5. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Xiao A; Wu Y; Yang Z; Hu Y; Wang W; Zhang Y; Kong L; Gao G; Zhu Z; Lin S; Zhang B Nucleic Acids Res; 2013 Jan; 41(Database issue):D415-22. PubMed ID: 23203870 [TBL] [Abstract][Full Text] [Related]
6. I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition. Orlowski J; Boniecki M; Bujnicki JM Bioinformatics; 2007 Mar; 23(5):527-30. PubMed ID: 17242028 [TBL] [Abstract][Full Text] [Related]
7. Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Liu Q; Derbyshire V; Belfort M; Edgell DR Nucleic Acids Res; 2006; 34(6):1755-64. PubMed ID: 16582101 [TBL] [Abstract][Full Text] [Related]
8. Reprogramming homing endonuclease specificity through computational design and directed evolution. Thyme SB; Boissel SJ; Arshiya Quadri S; Nolan T; Baker DA; Park RU; Kusak L; Ashworth J; Baker D Nucleic Acids Res; 2014 Feb; 42(4):2564-76. PubMed ID: 24270794 [TBL] [Abstract][Full Text] [Related]
9. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases. Lykke-Andersen J; Garrett RA; Kjems J EMBO J; 1997 Jun; 16(11):3272-81. PubMed ID: 9214642 [TBL] [Abstract][Full Text] [Related]
10. Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases. Fonfara I; Curth U; Pingoud A; Wende W Nucleic Acids Res; 2012 Jan; 40(2):847-60. PubMed ID: 21965534 [TBL] [Abstract][Full Text] [Related]
11. Origins of Programmable Nucleases for Genome Engineering. Chandrasegaran S; Carroll D J Mol Biol; 2016 Feb; 428(5 Pt B):963-89. PubMed ID: 26506267 [TBL] [Abstract][Full Text] [Related]
12. Mismatch cleavage by single-strand specific nucleases. Till BJ; Burtner C; Comai L; Henikoff S Nucleic Acids Res; 2004; 32(8):2632-41. PubMed ID: 15141034 [TBL] [Abstract][Full Text] [Related]
14. PCR-based bioprospecting for homing endonucleases in fungal mitochondrial rRNA genes. Hafez M; Guha TK; Shen C; Sethuraman J; Hausner G Methods Mol Biol; 2014; 1123():37-53. PubMed ID: 24510258 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatic identification of homing endonucleases and their target sites. Privman E Methods Mol Biol; 2014; 1123():27-35. PubMed ID: 24510257 [TBL] [Abstract][Full Text] [Related]
16. Targeted mutagenesis in sea urchin embryos using TALENs. Hosoi S; Sakuma T; Sakamoto N; Yamamoto T Dev Growth Differ; 2014 Jan; 56(1):92-7. PubMed ID: 24262038 [TBL] [Abstract][Full Text] [Related]
17. Recognition of a common rDNA target site in archaea and eukarya by analogous LAGLIDADG and His-Cys box homing endonucleases. Nomura N; Nomura Y; Sussman D; Klein D; Stoddard BL Nucleic Acids Res; 2008 Dec; 36(22):6988-98. PubMed ID: 18984620 [TBL] [Abstract][Full Text] [Related]
18. Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Kawai N; Ochiai H; Sakuma T; Yamada L; Sawada H; Yamamoto T; Sasakura Y Dev Growth Differ; 2012 Jun; 54(5):535-45. PubMed ID: 22640377 [TBL] [Abstract][Full Text] [Related]
19. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Aravind L; Makarova KS; Koonin EV Nucleic Acids Res; 2000 Sep; 28(18):3417-32. PubMed ID: 10982859 [TBL] [Abstract][Full Text] [Related]
20. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Ding W; Hu Z; Zhu D; Jiang X; Yu L; Wang X; Zhang C; Wang L; Ji T; Li K; He D; Xia X; Liu D; Zhou J; Ma D; Wang H Clin Cancer Res; 2014 Dec; 20(24):6495-503. PubMed ID: 25336692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]