These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21525243)

  • 1. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast.
    Slavov N; Botstein D
    Mol Biol Cell; 2011 Jun; 22(12):1997-2009. PubMed ID: 21525243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.
    Kitagaki H; Cowart LA; Matmati N; Montefusco D; Gandy J; de Avalos SV; Novgorodov SA; Zheng J; Obeid LM; Hannun YA
    J Biol Chem; 2009 Apr; 284(16):10818-30. PubMed ID: 19179331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of a metabolic cycling population at the single cell level as visualized by fluorescent gene expression reporters.
    Laxman S; Sutter BM; Tu BP
    PLoS One; 2010 Sep; 5(9):e12595. PubMed ID: 20830298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae.
    Aon MA; Mónaco ME; Cortassa S
    Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast.
    Brauer MJ; Huttenhower C; Airoldi EM; Rosenstein R; Matese JC; Gresham D; Boer VM; Troyanskaya OG; Botstein D
    Mol Biol Cell; 2008 Jan; 19(1):352-67. PubMed ID: 17959824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis.
    Cipollina C; van den Brink J; Daran-Lapujade P; Pronk JT; Porro D; de Winde JH
    Microbiology (Reading); 2008 Jun; 154(Pt 6):1686-1699. PubMed ID: 18524923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae.
    Haurie V; Perrot M; Mini T; Jenö P; Sagliocco F; Boucherie H
    J Biol Chem; 2001 Jan; 276(1):76-85. PubMed ID: 11024040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of genes associated with mitochondrial function to mild heat stress in yeast Saccharomyces cerevisiae.
    Sakaki K; Tashiro K; Kuhara S; Mihara K
    J Biochem; 2003 Sep; 134(3):373-84. PubMed ID: 14561723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.
    Silverman SJ; Petti AA; Slavov N; Parsons L; Briehof R; Thiberge SY; Zenklusen D; Gandhi SJ; Larson DR; Singer RH; Botstein D
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6946-51. PubMed ID: 20335538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast.
    Zhang N; Wu J; Oliver SG
    Microbiology (Reading); 2009 May; 155(Pt 5):1690-1698. PubMed ID: 19383711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response.
    Geijer C; Pirkov I; Vongsangnak W; Ericsson A; Nielsen J; Krantz M; Hohmann S
    BMC Genomics; 2012 Oct; 13():554. PubMed ID: 23066959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift.
    Sinha A; Pick E
    Methods Mol Biol; 2021; 2202():81-91. PubMed ID: 32857348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosome synthesis meets the cell cycle.
    Dez C; Tollervey D
    Curr Opin Microbiol; 2004 Dec; 7(6):631-7. PubMed ID: 15556036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How yeast coordinates metabolism, growth and division.
    Ewald JC
    Curr Opin Microbiol; 2018 Oct; 45():1-7. PubMed ID: 29334655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö; Nielsen J
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26205245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.
    Zhang T; Bu P; Zeng J; Vancura A
    J Biol Chem; 2017 Oct; 292(41):16942-16954. PubMed ID: 28830930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yeast osmostress response is carbon source dependent.
    Babazadeh R; Lahtvee PJ; Adiels CB; Goksör M; Nielsen JB; Hohmann S
    Sci Rep; 2017 Apr; 7(1):990. PubMed ID: 28428553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG; Hudson AP
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Catabolite Repression in Yeast is Not Limited to Glucose.
    Simpson-Lavy K; Kupiec M
    Sci Rep; 2019 Apr; 9(1):6491. PubMed ID: 31019232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.