BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 21525291)

  • 21. Separate blue and green cone networks in the mammalian retina.
    Li W; DeVries SH
    Nat Neurosci; 2004 Jul; 7(7):751-6. PubMed ID: 15208635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development.
    Rosa JM; Morrie RD; Baertsch HC; Feller MB
    J Neurosci; 2016 Sep; 36(37):9683-95. PubMed ID: 27629718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Retinal Basis of Vertebrate Color Vision.
    Baden T; Osorio D
    Annu Rev Vis Sci; 2019 Sep; 5():177-200. PubMed ID: 31226010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina.
    Liu PC; Chiao CC
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3388-95. PubMed ID: 17591913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution.
    Baden T; Schubert T; Chang L; Wei T; Zaichuk M; Wissinger B; Euler T
    Neuron; 2013 Dec; 80(5):1206-17. PubMed ID: 24314730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina.
    Percival KA; Jusuf PR; Martin PR; Grünert U
    J Comp Neurol; 2009 Dec; 517(5):655-69. PubMed ID: 19830807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina.
    Field GD; Greschner M; Gauthier JL; Rangel C; Shlens J; Sher A; Marshak DW; Litke AM; Chichilnisky EJ
    Nat Neurosci; 2009 Sep; 12(9):1159-64. PubMed ID: 19668201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina.
    Wässle H; Puller C; Müller F; Haverkamp S
    J Neurosci; 2009 Jan; 29(1):106-17. PubMed ID: 19129389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision.
    Mouland JW; Pienaar A; Williams C; Watson AJ; Lucas RJ; Brown TM
    Curr Biol; 2021 Aug; 31(15):3391-3400.e4. PubMed ID: 34111401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Segregation of short-wavelength sensitive ("blue") cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets.
    Hashemi-Nezhad M; Blessing EM; Dreher B; Martin PR
    Vision Res; 2008 Nov; 48(26):2604-14. PubMed ID: 18397798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight.
    Mouland JW; Martial F; Watson A; Lucas RJ; Brown TM
    Curr Biol; 2019 Dec; 29(24):4260-4267.e4. PubMed ID: 31846668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
    Lee BB; Martin PR; Valberg A
    J Physiol; 1989 Jul; 414():223-43. PubMed ID: 2607430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI.
    Mullen KT; Dumoulin SO; Hess RF
    Eur J Neurosci; 2008 Nov; 28(9):1911-23. PubMed ID: 18973604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joint representations of color and form in mouse visual cortex described by random pooling from rods and cones.
    Rhim I; Nauhaus I
    J Neurophysiol; 2023 Mar; 129(3):619-634. PubMed ID: 36696968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.
    Pridmore RW
    PLoS One; 2013; 8(10):e77134. PubMed ID: 24204755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus.
    Roy S; Jayakumar J; Martin PR; Dreher B; Saalmann YB; Hu D; Vidyasagar TR
    Eur J Neurosci; 2009 Oct; 30(8):1517-26. PubMed ID: 19821840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wide-field cone bipolar cells and the blue-ON pathway to color-coded ganglion cells in rabbit retina.
    Famiglietti EV
    Vis Neurosci; 2008; 25(1):53-66. PubMed ID: 18282310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Horizontal cell feedback without cone type-selective inhibition mediates "red-green" color opponency in midget ganglion cells of the primate retina.
    Crook JD; Manookin MB; Packer OS; Dacey DM
    J Neurosci; 2011 Feb; 31(5):1762-72. PubMed ID: 21289186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connections of diffuse bipolar cells in primate retina are biased against S-cones.
    Lee SC; Grünert U
    J Comp Neurol; 2007 May; 502(1):126-40. PubMed ID: 17335043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.