BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21525318)

  • 1. Effects of oxygen availability on maximum aerobic performance in Mus musculus selected for basal metabolic rate or aerobic capacity.
    Gebczyński AK; Konarzewski M
    J Exp Biol; 2011 May; 214(Pt 10):1714-20. PubMed ID: 21525318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum aerobic performance in lines of Mus selected for high wheel-running activity: effects of selection, oxygen availability and the mini-muscle phenotype.
    Rezende EL; Garland T; Chappell MA; Malisch JL; Gomes FR
    J Exp Biol; 2006 Jan; 209(Pt 1):115-27. PubMed ID: 16354783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy.
    Gebczyński AK; Konarzewski M
    J Exp Biol; 2009 Sep; 212(17):2872-8. PubMed ID: 19684223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice.
    Ksiazek A; Konarzewski M; Lapo IB
    Physiol Biochem Zool; 2004; 77(6):890-9. PubMed ID: 15674764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor activity of mice divergently selected for basal metabolic rate: a test of hypotheses on the evolution of endothermy.
    Gebczyński AK; Konarzewski M
    J Evol Biol; 2009 Jun; 22(6):1212-20. PubMed ID: 19344384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running.
    Rezende EL; Chappell MA; Gomes FR; Malisch JL; Garland T
    J Exp Biol; 2005 Jun; 208(Pt 12):2447-58. PubMed ID: 15939783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of size, sex, and voluntary running speeds on costs of locomotion in lines of laboratory mice selectively bred for high wheel-running activity.
    Rezende EL; Kelly SA; Gomes FR; Chappell MA; Garland T
    Physiol Biochem Zool; 2006; 79(1):83-99. PubMed ID: 16380930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy.
    Sadowska ET; Labocha MK; Baliga K; Stanisz A; Wróblewska AK; Jagusiak W; Koteja P
    Evolution; 2005 Mar; 59(3):672-81. PubMed ID: 15856708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Living at the physiological limits: field and maximum metabolic rates of the common shrew (Sorex araneus).
    Ochocińska D; Taylor JR
    Physiol Biochem Zool; 2005; 78(5):808-18. PubMed ID: 16096983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dietary restriction on immune response of laboratory mice divergently selected for basal metabolic rate.
    Książek A; Konarzewski M
    Physiol Biochem Zool; 2012; 85(1):51-61. PubMed ID: 22237289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of feeding and hypoxia on cardiac performance and gastrointestinal blood flow during critical speed swimming in the sea bass Dicentrarchus labrax.
    Dupont-Prinet A; Claireaux G; McKenzie DJ
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Oct; 154(2):233-40. PubMed ID: 19559805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic flexibility of traits related to energy acquisition in mice divergently selected for basal metabolic rate (BMR).
    Ksiazek A; Czerniecki J; Konarzewski M
    J Exp Biol; 2009 Mar; 212(Pt 6):808-14. PubMed ID: 19251997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial oxygen affinity predicts basal metabolic rate in humans.
    Larsen FJ; Schiffer TA; Sahlin K; Ekblom B; Weitzberg E; Lundberg JO
    FASEB J; 2011 Aug; 25(8):2843-52. PubMed ID: 21576503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomic and molecular correlates of divergent selection for basal metabolic rate in laboratory mice.
    Brzek P; Bielawska K; Ksiazek A; Konarzewski M
    Physiol Biochem Zool; 2007; 80(5):491-9. PubMed ID: 17717812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor trade-offs in mice selectively bred for high voluntary wheel running.
    Dlugosz EM; Chappell MA; McGillivray DG; Syme DA; Garland T
    J Exp Biol; 2009 Aug; 212(Pt 16):2612-8. PubMed ID: 19648406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of dissolved oxygen level on the metabolic interaction between digestion and locomotion in juvenile southern catfish (Silurus meridionalis Chen).
    Zhang W; Cao ZD; Peng JL; Chen BJ; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Nov; 157(3):212-9. PubMed ID: 20601052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive energetics in house mice, Mus musculus domesticus, from the island of Porto Santo (Madeira archipelago, North Atlantic).
    Mathias ML; Nunes AC; Marques CC; Sousa I; Ramalhinho MG; Auffray JC; Catalan J; Britton-Davidian J
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Apr; 137(4):703-9. PubMed ID: 15123178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic capacity and running performance across a 1.6 km altitude difference in two sciurid rodents.
    Chappell MA; Dlugosz EM
    J Exp Biol; 2009 Mar; 212(Pt 5):610-9. PubMed ID: 19218511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.
    Rezende EL; Gomes FR; Chappell MA; Garland T
    Physiol Biochem Zool; 2009; 82(6):662-79. PubMed ID: 19799520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-level regulation and metabolic scaling.
    Suarez RK; Darveau CA
    J Exp Biol; 2005 May; 208(Pt 9):1627-34. PubMed ID: 15855394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.