BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21525363)

  • 1. Optogenetic photochemical control of designer K+ channels in mammalian neurons.
    Fortin DL; Dunn TW; Fedorchak A; Allen D; Montpetit R; Banghart MR; Trauner D; Adelman JP; Kramer RH
    J Neurophysiol; 2011 Jul; 106(1):488-96. PubMed ID: 21525363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic techniques for the study of native potassium channels.
    Sandoz G; Levitz J
    Front Mol Neurosci; 2013; 6():6. PubMed ID: 23596388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and improving photo-control of ion channels in nociceptors with azobenzene photo-switches.
    Mourot A; Herold C; Kienzler MA; Kramer RH
    Br J Pharmacol; 2018 Jun; 175(12):2296-2311. PubMed ID: 28635081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced depolarization of neurons using a modified Shaker K(+) channel and a molecular photoswitch.
    Chambers JJ; Banghart MR; Trauner D; Kramer RH
    J Neurophysiol; 2006 Nov; 96(5):2792-6. PubMed ID: 16870840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical control of endogenous ion channels and cellular excitability.
    Fortin DL; Banghart MR; Dunn TW; Borges K; Wagenaar DA; Gaudry Q; Karakossian MH; Otis TS; Kristan WB; Trauner D; Kramer RH
    Nat Methods; 2008 Apr; 5(4):331-8. PubMed ID: 18311146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced axonal surface expression and phosphoinositide sensitivity in K
    Kim EC; Zhang J; Pang W; Wang S; Lee KY; Cavaretta JP; Walters J; Procko E; Tsai NP; Chung HJ
    Neurobiol Dis; 2018 Oct; 118():76-93. PubMed ID: 30008368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-activated ion channels for remote control of neuronal firing.
    Banghart M; Borges K; Isacoff E; Trauner D; Kramer RH
    Nat Neurosci; 2004 Dec; 7(12):1381-6. PubMed ID: 15558062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Sensorless Pore Module of Voltage-gated K+ Channel Family 7 Embodies the Target Site for the Anticonvulsant Retigabine.
    Syeda R; Santos JS; Montal M
    J Biol Chem; 2016 Feb; 291(6):2931-7. PubMed ID: 26627826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved threonine in the S1-S2 loop of KV7.2 and K V7.3 channels regulates voltage-dependent activation.
    Füll Y; Seebohm G; Lerche H; Maljevic S
    Pflugers Arch; 2013 Jun; 465(6):797-804. PubMed ID: 23271449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels.
    Kasten MR; Rudy B; Anderson MP
    J Physiol; 2007 Oct; 584(Pt 2):565-82. PubMed ID: 17761775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The large conductance Ca2+-activated potassium channel (pSlo) of the cockroach Periplaneta americana: structure, localization in neurons and electrophysiology.
    Derst C; Messutat S; Walther C; Eckert M; Heinemann SH; Wicher D
    Eur J Neurosci; 2003 Mar; 17(6):1197-212. PubMed ID: 12670308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current.
    Shapiro MS; Roche JP; Kaftan EJ; Cruzblanca H; Mackie K; Hille B
    J Neurosci; 2000 Mar; 20(5):1710-21. PubMed ID: 10684873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons.
    Prole DL; Lima PA; Marrion NV
    J Gen Physiol; 2003 Dec; 122(6):775-93. PubMed ID: 14638935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants of M-type KCNQ (Kv7) K+ channel assembly.
    Schwake M; Athanasiadu D; Beimgraben C; Blanz J; Beck C; Jentsch TJ; Saftig P; Friedrich T
    J Neurosci; 2006 Apr; 26(14):3757-66. PubMed ID: 16597729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of voltage-dependent K(+) channel genes in mesenteric artery smooth muscle cells.
    Xu C; Lu Y; Tang G; Wang R
    Am J Physiol; 1999 Nov; 277(5):G1055-63. PubMed ID: 10564112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier.
    Peretz A; Pell L; Gofman Y; Haitin Y; Shamgar L; Patrich E; Kornilov P; Gourgy-Hacohen O; Ben-Tal N; Attali B
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15637-42. PubMed ID: 20713704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 1H NMR assay for measuring the photostationary States of photoswitchable ligands.
    Banghart MR; Trauner D
    Methods Mol Biol; 2013; 995():107-20. PubMed ID: 23494375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2.
    Telezhkin V; Brown DA; Gibb AJ
    J Gen Physiol; 2012 Jul; 140(1):41-53. PubMed ID: 22689829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.