These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 21525384)

  • 21. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains.
    Muyldermans S; Atarhouch T; Saldanha J; Barbosa JA; Hamers R
    Protein Eng; 1994 Sep; 7(9):1129-35. PubMed ID: 7831284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral recognition of a dye hapten by a llama VHH domain.
    Spinelli S; Tegoni M; Frenken L; van Vliet C; Cambillau C
    J Mol Biol; 2001 Aug; 311(1):123-9. PubMed ID: 11469862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions.
    Perchiacca JM; Bhattacharya M; Tessier PM
    Proteins; 2011 Sep; 79(9):2637-47. PubMed ID: 21732420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bovine IgM antibodies with exceptionally long complementarity-determining region 3 of the heavy chain share unique structural properties conferring restricted VH + Vlambda pairings.
    Saini SS; Farrugia W; Ramsland PA; Kaushik AK
    Int Immunol; 2003 Jul; 15(7):845-53. PubMed ID: 12807823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting antibody complementarity determining region structures without classification.
    Choi Y; Deane CM
    Mol Biosyst; 2011 Dec; 7(12):3327-34. PubMed ID: 22011953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires.
    De Genst E; Silence K; Ghahroudi MA; Decanniere K; Loris R; Kinne J; Wyns L; Muyldermans S
    J Biol Chem; 2005 Apr; 280(14):14114-21. PubMed ID: 15659390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three camelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition and versatility of binding topology.
    Desmyter A; Spinelli S; Payan F; Lauwereys M; Wyns L; Muyldermans S; Cambillau C
    J Biol Chem; 2002 Jun; 277(26):23645-50. PubMed ID: 11960990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction.
    Zhu K; Day T; Warshaviak D; Murrett C; Friesner R; Pearlman D
    Proteins; 2014 Aug; 82(8):1646-55. PubMed ID: 24619874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae.
    Gorlani A; Hulsik DL; Adams H; Vriend G; Hermans P; Verrips T
    Protein Eng Des Sel; 2012 Jan; 25(1):39-46. PubMed ID: 22143875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new clustering of antibody CDR loop conformations.
    North B; Lehmann A; Dunbrack RL
    J Mol Biol; 2011 Feb; 406(2):228-56. PubMed ID: 21035459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural diversity in a human antibody germline library.
    Teplyakov A; Obmolova G; Malia TJ; Luo J; Muzammil S; Sweet R; Almagro JC; Gilliland GL
    MAbs; 2016; 8(6):1045-63. PubMed ID: 27210805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solution structure of a llama single-domain antibody with hydrophobic residues typical of the VH/VL interface.
    Vranken W; Tolkatchev D; Xu P; Tanha J; Chen Z; Narang S; Ni F
    Biochemistry; 2002 Jul; 41(27):8570-9. PubMed ID: 12093273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains.
    Honegger A; Malebranche AD; Röthlisberger D; Plückthun A
    Protein Eng Des Sel; 2009 Mar; 22(3):121-34. PubMed ID: 19136675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving solubility and refolding efficiency of human V(H)s by a novel mutational approach.
    Tanha J; Nguyen TD; Ng A; Ryan S; Ni F; Mackenzie R
    Protein Eng Des Sel; 2006 Nov; 19(11):503-9. PubMed ID: 16971398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformations of the third hypervariable region in the VH domain of immunoglobulins.
    Morea V; Tramontano A; Rustici M; Chothia C; Lesk AM
    J Mol Biol; 1998 Jan; 275(2):269-94. PubMed ID: 9466909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibody repertoire development in camelids.
    De Genst E; Saerens D; Muyldermans S; Conrath K
    Dev Comp Immunol; 2006; 30(1-2):187-98. PubMed ID: 16051357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Global Sequence Signature algorithm unveils a structural network surrounding heavy chain CDR3 loop in Camelidae variable domains.
    Kastelic D; Soler N; Komel R; Pompon D
    Biochim Biophys Acta; 2013 Jun; 1830(6):3373-81. PubMed ID: 23454650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational similarity and systematic displacement of complementarity determining region loops in high resolution antibody x-ray structures.
    Bajorath J; Harris L; Novotny J
    J Biol Chem; 1995 Sep; 270(38):22081-4. PubMed ID: 7673180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural classification of CDR-H3 revisited: a lesson in antibody modeling.
    Kuroda D; Shirai H; Kobori M; Nakamura H
    Proteins; 2008 Nov; 73(3):608-20. PubMed ID: 18473362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive evolution of variable region genes encoding an unusual type of immunoglobulin in camelids.
    Su C; Nguyen VK; Nei M
    Mol Biol Evol; 2002 Mar; 19(3):205-15. PubMed ID: 11861879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.