BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21525530)

  • 1. A critical role of downstream RNA polymerase-promoter interactions in the formation of initiation complex.
    Mekler V; Minakhin L; Severinov K
    J Biol Chem; 2011 Jun; 286(25):22600-8. PubMed ID: 21525530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
    Mekler V; Minakhin L; Borukhov S; Mustaev A; Severinov K
    J Mol Biol; 2014 Dec; 426(24):3973-3984. PubMed ID: 25311862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes.
    Mekler V; Minakhin L; Kuznedelov K; Mukhamedyarov D; Severinov K
    Nucleic Acids Res; 2012 Dec; 40(22):11352-62. PubMed ID: 23087380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of transcription inhibition by phage T7 gp2 protein.
    Mekler V; Minakhin L; Sheppard C; Wigneshweraraj S; Severinov K
    J Mol Biol; 2011 Nov; 413(5):1016-27. PubMed ID: 21963987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fork junction DNA-protein switch that controls promoter melting by the bacterial enhancer-dependent sigma factor.
    Guo Y; Wang L; Gralla JD
    EMBO J; 1999 Jul; 18(13):3736-45. PubMed ID: 10393188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a bacterial RNA polymerase holoenzyme open promoter complex.
    Bae B; Feklistov A; Lass-Napiorkowska A; Landick R; Darst SA
    Elife; 2015 Sep; 4():. PubMed ID: 26349032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Escherichia coli RNA polymerase σ70 subunit with promoter elements in the context of free σ70, RNA polymerase holoenzyme, and the β'-σ70 complex.
    Mekler V; Pavlova O; Severinov K
    J Biol Chem; 2011 Jan; 286(1):270-9. PubMed ID: 20952386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli RNA polymerase contacts outside the -10 promoter element are not essential for promoter melting.
    Niedziela-Majka A; Heyduk T
    J Biol Chem; 2005 Nov; 280(46):38219-27. PubMed ID: 16169843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryo-EM structure of
    Narayanan A; Vago FS; Li K; Qayyum MZ; Yernool D; Jiang W; Murakami KS
    J Biol Chem; 2018 May; 293(19):7367-7375. PubMed ID: 29581236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid.
    Naryshkina T; Kuznedelov K; Severinov K
    J Mol Biol; 2006 Aug; 361(4):634-43. PubMed ID: 16781733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutant RNA polymerase that forms unusual open promoter complexes.
    Severinov K; Darst SA
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13481-6. PubMed ID: 9391051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperativity and interaction energy threshold effects in recognition of the -10 promoter element by bacterial RNA polymerase.
    Mekler V; Severinov K
    Nucleic Acids Res; 2013 Aug; 41(15):7276-85. PubMed ID: 23771146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding.
    Boyaci H; Chen J; Jansen R; Darst SA; Campbell EA
    Nature; 2019 Jan; 565(7739):382-385. PubMed ID: 30626968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation.
    Drennan A; Kraemer M; Capp M; Gries T; Ruff E; Sheppard C; Wigneshweraraj S; Artsimovitch I; Record MT
    Biochemistry; 2012 Nov; 51(47):9447-59. PubMed ID: 23116321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation.
    Wigneshweraraj SR; Nechaev S; Severinov K; Buck M
    J Mol Biol; 2002 Jun; 319(5):1067-83. PubMed ID: 12079348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence determinants for the recognition of the fork junction DNA containing the -10 region of promoter DNA by E. coli RNA polymerase.
    Matlock DL; Heyduk T
    Biochemistry; 2000 Oct; 39(40):12274-83. PubMed ID: 11015206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoter spacer DNA plays an active role in integrating the functional consequences of RNA polymerase contacts with -10 and -35 promoter elements.
    Sztiller-Sikorska M; Heyduk E; Heyduk T
    Biophys Chem; 2011 Nov; 159(1):73-81. PubMed ID: 21621902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis.
    Saecker RM; Record MT; Dehaseth PL
    J Mol Biol; 2011 Oct; 412(5):754-71. PubMed ID: 21371479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling of the sigma70 subunit non-template DNA strand contacts during the final step of transcription initiation.
    Brodolin K; Zenkin N; Severinov K
    J Mol Biol; 2005 Jul; 350(5):930-7. PubMed ID: 15978618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection.
    Vvedenskaya IO; Vahedian-Movahed H; Zhang Y; Taylor DM; Ebright RH; Nickels BE
    Proc Natl Acad Sci U S A; 2016 May; 113(21):E2899-905. PubMed ID: 27162333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.