BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 21525600)

  • 1. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.
    Bornhoft JM; Strabala KW; Wortman TD; Lehman AC; Oleynikov D; Farritor SM
    Biomed Sci Instrum; 2011; 47():76-81. PubMed ID: 21525600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techniques for developing and viewing stereoscopic three-dimensional teaching videos for transoral robotic surgery (TORS).
    Gomez ED; Thaler ER; O'Malley BW; Rassekh CH; Weinstein GS; Newman JG; Brody RM
    J Robot Surg; 2019 Aug; 13(4):581-584. PubMed ID: 30945096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of visual force feedback on robot-assisted surgical task performance.
    Reiley CE; Akinbiyi T; Burschka D; Chang DC; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2008 Jan; 135(1):196-202. PubMed ID: 18179942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery.
    Koehn JK; Kuchenbecker KJ
    Surg Endosc; 2015 Oct; 29(10):2970-83. PubMed ID: 25539693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics-based stereoscopic suturing simulation with force feedback and continuous multipoint interactions for training on the da Vinci surgical system.
    Deo D; De S; Singh TP
    Stud Health Technol Inform; 2007; 125():115-20. PubMed ID: 17377247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic total thyroidectomy with modified radical neck dissection via unilateral retroauricular approach.
    Byeon HK; Holsinger FC; Tufano RP; Chung HJ; Kim WS; Koh YW; Choi EC
    Ann Surg Oncol; 2014 Nov; 21(12):3872-5. PubMed ID: 25227305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-assisted Sistrunk's operation, total thyroidectomy, and neck dissection via a transaxillary and retroauricular (TARA) approach in papillary carcinoma arising in thyroglossal duct cyst and thyroid gland.
    Byeon HK; Ban MJ; Lee JM; Ha JG; Kim ES; Koh YW; Choi EC
    Ann Surg Oncol; 2012 Dec; 19(13):4259-61. PubMed ID: 23070784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
    Lim SC; Lee HK; Park J
    Int J Med Robot; 2015 Sep; 11(3):360-374. PubMed ID: 25328100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems.
    Friedrich DT; Dürselen L; Mayer B; Hacker S; Schall F; Hahn J; Hoffmann TK; Schuler PJ; Greve J
    J Robot Surg; 2018 Mar; 12(1):103-108. PubMed ID: 28470408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haptic palpation of head and neck cancer patients--implication for education and telemedicine.
    Stalfors J; Kling-Petersen T; Rydmark M; Westin T
    Stud Health Technol Inform; 2001; 81():471-4. PubMed ID: 11317793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3-D mixed-reality system for stereoscopic visualization of medical dataset.
    Ferrari V; Megali G; Troia E; Pietrabissa A; Mosca F
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2627-33. PubMed ID: 19651551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sensory substitution on suture manipulation forces for surgical teleoperation.
    Kitagawa M; Dokko D; Okamura AM; Bethea BT; Yuh DD
    Stud Health Technol Inform; 2004; 98():157-63. PubMed ID: 15544263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoscopic augmented reality for laparoscopic surgery.
    Kang X; Azizian M; Wilson E; Wu K; Martin AD; Kane TD; Peters CA; Cleary K; Shekhar R
    Surg Endosc; 2014 Jul; 28(7):2227-35. PubMed ID: 24488352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.