BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21525630)

  • 21. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    Acta Biomater; 2014 May; 10(5):2125-32. PubMed ID: 24424269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering.
    Mondrinos MJ; Dembzynski R; Lu L; Byrapogu VK; Wootton DM; Lelkes PI; Zhou J
    Biomaterials; 2006 Sep; 27(25):4399-408. PubMed ID: 16678255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent-assisted room-temperature compression molding approach to fabricate porous scaffolds for tissue engineering.
    Jing D; Wu L; Ding J
    Macromol Biosci; 2006 Sep; 6(9):747-57. PubMed ID: 16967479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic investigation of porogen size and content on scaffold morphometric parameters and properties.
    Lin-Gibson S; Cooper JA; Landis FA; Cicerone MT
    Biomacromolecules; 2007 May; 8(5):1511-8. PubMed ID: 17381151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new generation of sodium chloride porogen for tissue engineering.
    Tran RT; Naseri E; Kolasnikov A; Bai X; Yang J
    Biotechnol Appl Biochem; 2011; 58(5):335-44. PubMed ID: 21995536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering.
    Nasri-Nasrabadi B; Mehrasa M; Rafienia M; Bonakdar S; Behzad T; Gavanji S
    Carbohydr Polym; 2014 Aug; 108():232-8. PubMed ID: 24751269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relating pore size variation of poly (ɛ-caprolactone) scaffolds to molecular weight of porogen and evaluation of scaffold properties after degradation.
    Columbus S; Krishnan LK; Kalliyana Krishnan V
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):789-96. PubMed ID: 24142458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel porous natural polymer scaffold for tissue engineering.
    Gong S; Dong J; Xue ST; Wang JY
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4884-7. PubMed ID: 17281337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solvent-Free Processing of Drug-Loaded Poly(ε-Caprolactone) Scaffolds with Tunable Macroporosity by Combination of Supercritical Foaming and Thermal Porogen Leaching.
    Santos-Rosales V; Ardao I; Goimil L; Gomez-Amoza JL; García-González CA
    Polymers (Basel); 2021 Jan; 13(1):. PubMed ID: 33406680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2006 Oct; 79(1):128-38. PubMed ID: 16779769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porosity and mechanical properties relationship in PCL porous scaffolds.
    Guarino V; Causa F; Ambrosio L
    J Appl Biomater Biomech; 2007; 5(3):149-57. PubMed ID: 20799184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold.
    Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH
    Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach.
    Yin HM; Qian J; Zhang J; Lin ZF; Li JS; Xu JZ; Li ZM
    Polymers (Basel); 2016 May; 8(6):. PubMed ID: 30979308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds.
    Wu L; Jing D; Ding J
    Biomaterials; 2006 Jan; 27(2):185-91. PubMed ID: 16098580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous crosslinked polycaprolactone hydroxyapatite networks for bone tissue engineering.
    Koupaei N; Karkhaneh A
    Tissue Eng Regen Med; 2016 Jun; 13(3):251-260. PubMed ID: 30603406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds.
    Juan PK; Fan FY; Lin WC; Liao PB; Huang CF; Shen YK; Ruslin M; Lee CH
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microspheres leaching for scaffold porosity control.
    Draghi L; Resta S; Pirozzolo MG; Tanzi MC
    J Mater Sci Mater Med; 2005 Dec; 16(12):1093-7. PubMed ID: 16362206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.